
Cross-chain asset transfer from zk rollups
without additional security assumptions

Jeroen van de Graaf1⋆

Universidade Federal de Minas Gerais and ZKM Research

Abstract. Interoperability between two different blockchains, for in-
stance to transfer funds, is often implemented using a bridge, a separate,
newly created intermediary which interacts between the two blockchains.
We show that, given that both blockchain have a zkRollup and therefore
a zkVM, it is relatively straightforward to implement blockchain interop-
erability without the need for a separated trusted authority or additional
trust assumptions. The cross-chain transaction thus obtained inherits the
security properties of its underlying primitives.
We also show a different design called parallel rollups, and show how
such systems can increase cross-chain operability and resolve liquidity
fragmentation.

Keywords: Entangled Rollups, zkRollups, Interoperability, Blockchain,
Smart Contract

1 Motivation

Each blockchain is a essentially an island in the middle of the ocean, an isolated
entity unaware of the outside world or the existence of other chains. However,
many instances arise in which we would like blockchains to communicate to each
other, to send arbitrary messages and, more specifically, to transfer assets.

The current solution adopted is called a bridge, a separate, intermediate en-
tity, which is trusted with holding assets during some period of the transaction.
This trust assumption is undesirable since it provides a potential point of fail-
ure: while your assets are in transfer, the bridge can be hacked (as has happened
already many times [3]) or suddenly go out of service, leaving you with no re-
course.

1.1 Summary of our results

The main result of our research can be stated as follows: Assuming the existence
of a zkRollup on base chain B, it is possible to implement cross-chain asset
transfer from A to B without the need for additional trust assumptions or trusted
entities, just by combining the underlying primitives in a clever way.

The main intuition follows the following steps:
⋆ contact author: jeroen.g@zkm.io

jeroen.g@zkm.io

2

1. The existence of a zkRollup implies the availability of a zkVM used to prove
that the batch data published by the rollup is correct.

2. This zkVM can be employed to create a zk proof of a transaction settled
(i.e. finalized) on L2, which can then be sent to L1. Such a proof serves as a
certified check: if assets have been destroyed on L2, creation of the equivalent
amount on L1 is authorized.

3. Likewise, this zkVM can be employed to create zk proofs of transaction
settlement on base chain A. If verified and accepted by base chain B, cross-
chain asset transfer is possible. This mechanism is called an entangled rollup.

The main goal of this paper is to make this intuition precise by detailing
the underlying primitives and providing a step-by-step logical reasoning. The
paper also outlines how an entangled rollup can be applied to improve liquidity
optimization and implement a universal settlement layer.

1.2 Comparison to other work

Probably the most interesting proposal is zkBridge [11] developed by Polyhedra
Network. The model in their is more rudimentary, starting from honest nodes
that run a blockchain, whereas we already assume the existence (equivalence)
of an L2 Rollup Ledger functionality. zkBridge uses zkSNARKs [7] specifically
developed for each consensus mechanism, while we can use a zkVM, thus speeding
up development time. There is also a difference in emphasis: we focus on asset
transfer as the most imprtant use case leading us to discuss asset invariance for
each transaction, while zkBridge merely treat asset transfer as a special kind of
message.

Other projects developing zero knowledge (zk) bridging solutions in various
stages include Succinct Labs, zkIBC by Electron Labs. These initiatives utilize
zkSNARKs to enhance bridge designs. Central to their success is a light client
protocol for efficient blockchain interaction and state synchronization.

1.3 Outline of the paper

Note that we claim our proposal uses the same security assumptions that already
exist in a zkRollup. So we need to describe carefully how a Layer2 prepares a zk
rollup and sends it to Layer1, and make implicit security assumptions explicit.
Then, by combining these primitives, we obtain cross-chain asset transfer (i.e.
the functionality that a bridge provides) without adding security assumptions
(like an additional trusted party).

These consideration suggest the following structure for this paper: Section 2
reviews some notions such as zkVM and zk rollup. Section 3 focuses on correct-
ness and defines asset invariance, which are applies in Section 4 which details
L1-to-L2 and L2-to-L1 transactions in a zk rollup. Section 5 summarizes prop-
erties obtained and outlines the strategy to implement cross-chain transactions,
which is presented in detail Section 6 applied to to two base chains. In Section
7 we show that by lifting our techiques to L2 some large advantages may be

3

obtained, whereas Section 8 shows how more privacy can be obtained. Section 9
concludes with open problems and future research.

2 Preliminaries

2.1 Verifiable computing

In verifiable computing, a computationally weak party outsources some compu-
tation F () with input x to a strong part. The latter not only computes the result
y, but also provides a validity proof in order to show that the result y = F (x) was
computed correctly. Such a validity proof is often called a zero knowledge proof,
even though this terminology is incorrect strictly speaking, since zero knowledge
is a way to define privacy, a way of saying the a protocol not leaks any useful
information [6]. However, in many contexts, such as rollups, privacy isn’t an is-
sue, since the transactions are made public anyway. What is important, though,
is the succinctness of such a proof, since on-chain verification is expensive and
therefore should be efficient. Even though it is very unsatisfactory to use termi-
nology that historically speaking is incorrect, we will adhere to the field’s custom
to use ‘zk’ to mean ‘succinct’, not ‘private’.

Over the last decade we have seen tremendous progress in the practical re-
alization of verifiable computing. Initially, a computation (program execution)
was represented R1CS, and later by Boolean and arithmetic circuits, which are
then transformed into polynomials. This process is called arithmetization All
these proof are summarized under the term SNARK, standing for Succinct Non-
interactive ARgument of Knowledge [8]. A problem of this approach is that for
each program F () a new SNARK has to be developed, and creating a SNARK
is prone to errors.

To side-step this problem, a new approach is to automate this process by
using a zk virtual machine, or zkVM. The role of a zkVM is as follows. As
input it accepts the execution trace of the computation y = F (x) performed on
some specific processor architecture, such as MIPS, Risc5, WASM etc. Since a
computation happens in steps, its overall state can be defined by the values of a
finite list of variables. A valid computation is a sequence of states, from a well-
defined initial state to some final state, in which each state transition represents
a valid computation step. This sequence can be represented as a table whose
columns represent the list of variables and whose rows represent each step of the
computation. This execution table is then converted in some huge, complicated
polynomial which allows succinct verification of the statement “y = F (x)”.

2.2 Rollup

In a rollup, transaction processing is taken off-chain, combined into batches,
in order to reduce cost and enhance speed. But the result of every transaction
will be recorded on the base chain, as well as the overall rollup ledger’s state.
However, there always a delay between the core L2 and it being recorded on L1.

4

In the words of Vitalik Buterin, whose concise blogpost [5] is an excellent
introduction, rollups move computation (and state storage) off-chain, but keep
some data per transaction on-chain. To improve efficiency, they use a whole host
of fancy compression tricks to replace data with computation wherever possible.
[...]

5

There is a smart contract on-chain which maintains a state root: the Merkle
root of the state of the rollup (meaning, the account balances, contract code,
etc, that are ”inside” the rollup). Anyone can publish a batch, a collection of
transactions in a highly compressed form together with the previous state root
and the new state root (the Merkle root after processing the transactions). The
contract checks that the previous state root in the batch matches its current state
root; if it does, it switches the state root to the new state root.

In other words, a Rollup emulates the ledger functionality on top of the
original blockchain, which are called Layer 2 and Layer 1, respectively. In a
rollup, the validity of L2 transactions is guaranteed by L1: each state transition
is maintained, verified and endorsed by the base chain. L1 therefore needs an
external verification mechanism, independent of the L2 implementation. For this
purpose, two mechanisms are commonly used:

Fault proofs, as used by optimistic rollups In an optimistic rollup,
some entity, usually called the Sequencer, publishes (oldStateRoot2, txBatch,
newStateRoot2) on Layer1. This batch is accepted, until proven otherwise; hence
the term optimistic. During some period of time (often seven days) this state
change can be challenged by an outsider. If no such challenge takes place, the
proposed state becomes permanent, but if a state change is challenged, then the
following happens. There exists an arbitration contract on L1 which is activated
by the Challenger, who deposits a bond. This contract will decide who is right:
the Sequencer or the Challenger. As a result, the loser of this arbitration will be
punished by having its stake or bond slashed. For a more detailed description
about optimistic rollups, see for instance [9].

Validity proofs, as used in zk rollups In a validity proof, a differ-
ent approach is taken. For every state transition oldStateRoot, txBatch −→
newStateRoot2 a proof of knowledge is generated, which shows that newStateRoot
is the correct result of executing the batch.

In a zkRollup, users submit a transaction to a node, which forwards it to a
Sequencer, whose task it is to bundle many transactions into a batch, call the
zkVM to compute a proof, and send it to L1.

Let STF denote the state transition function for the Layer 2 ledger. If the
Sequencer is honest, we must have that newState = STF(oldState, txBatch). So
by applying verifiable computing on STF , L1, or rather, somebody who is mon-
itoring this base chain, can be convinced that L2 indeed computed newState
correctly from oldState and txBatch. In particular, the execution trace of com-
puting newState = STF(oldState, txBatch) is sent to a zkVM, which produces
a succinct, non-interactive validity proof for this computation, which can be
verified by the zkVerifier smart contract on L1.

The rollup contract on L1 has a method which, on input (oldState, batch,
newState, zkProof), verifies the proof and returns an ACCEPT/REJECT ver-
dict. In case of an ACCEPT, oldState, batch, newState are recorded as valid on
L1, while in case of REJECT the batch and state change are simply discarded.

6

Fig. 1: High-level sketch of a zk rollup

Sequencer

1. txBatch = [hdr; tx(1), tx(2) ... tx(n)]
2. (newState, execTrace) = STF2(oldState, txBatch)
3. newStateRoot = computeStateRoot(newState)
4. compressedTxBatch = Compress(txBatch)
5. zkProof = generateZkProof [”newStateRoot has been computed correctly”]
6. TX = [oldStateRoot, compressedTxBatch, newStateRoot, zkProof]
7. SEND(TX) to rollup smart contract on L1

Fig. 2: Pseudo-code for the Sequencer in a zk rollup.

3 Correctness of transactions

In this section we discuss what guarantees the correctness of a transaction on L1
and of a transaction on the rollup. An important aspect of correctness is asset
invariance, which we define now. Let L represent Layer 1 or Layer 2. Blockchains
are ledgers and therefore each transaction is only valid if it maintains the amount
of assets invariant, expressed by the equation

totalAssetsL(newStateL) = totalAssetsL(oldStateL)

For account-based L1s, asset invariance of a transaction can be verified by
only summing the balance differences for those accounts i included in the transac-
tion:

∑
i newBalancei =

∑
i oldBalancei. In UTXO-based L1s, the UTXO equa-

tion is exactly defined as to enforce this invariant, including returning change to
the payer.[2] Note that minting, for instance for rewarding validation (mining)
efforts, increases the amount of total assets in the new state, but to simplify the
discussion we do not consider mining in the remainder of our paper.

7

RollupSC1(oldStateRoot, compressedTxBatch, newStateRoot, zkProof)

1. currentStateRoot = fetchStateRoot()
2. if currentStateRoot != oldStateRoot: ABORT(report error)
3. if verifyZkProof(oldStateRoot, compressedTxBatch, newStateRoot, zkProof) != OK:

ABORT(report error)
4. appendToRollupData(newState,compressedTxBatch)

Fig. 3: Pseudo-code for the rollup’s smart contract on L1.

Correctness of L1 transaction execution Correct execution of a trans-
action between two or more accounts on the same L1 is guaranteed since each
L1 chain implements atomic transactions. This means that a transaction either
succeeds or is aborted and rolled back, thus never leaving the blockchain in an
inconsistent state. Its correctness implementation is guaranteed because the L1
software is open source; we therefore assume that many people have looked at
it and eventual errors have been corrected.

Correctness of L2 transaction execution The situation for L2 and its
rollup is more subtle. We assume the existence of an open source reference im-
plementation for L2 which is correct and preserves asset invariance. In practice,
this reference implementation will often be a copy of L1, to maintain compati-
bility. However, a priori there is no reason to believe that batch proposers have
followed this implementation faithfully. That’s why the rollup data is published
on L1 and why a rollup must have a verification mechanism.

In the context of an optimistic rollup, a Challenger must show that that there
is an error in the batch proposer if compared to this reference implementation.
In the case of a zk rollup, the zkVM verifies that the rollup data published on
L1 is consistent with the ledger program on L2.

A small but important detail is this: in a traditional protocol for proof-of-
knowledge [6] a human verifier only needs to make sure that his program V is
correct. But a human verifying a zk rollup must also convince himself that the
state transition function STF for L2 is correctly following the reference imple-
mentation. Again, the zk rollup verifies consistency of the rollup data published
with the program submitted to the zkVM, but if this program contains an error,
then the zkVerifier smart contract on L1 will not catch this.

In summary, the correctness of zk rollup transaction execution fundamentally
depends on the correctness of the L2 reference implementation, correct imple-
mentation of the zkVM, correct invocation of the zkVM (with the right program
to be verified), and correct implementation of the zkVerifier smart contract on
L1. The issue of software correctness is of great concern, but out of the scope of
this (theoretical) paper.

8

4 Vertical asset transfer between L1 and L2

Given an L1 with an L2 rollup, asset transfers between the two layers occur
naturally. Using Ethereum in the example, we have two direction:

Up, from L1 to L2: deposit (or buy) L2 assets: lock ETH on L1, and obtain
ETH2 (the “wrapped” token created for L2);

Down, from L2 to L1: withdraw (or sell) L2 assets: lock ETH2 and redeem
them as ETH on L1

To accomplish asset invariance, the rollup defines auxiliary asset transfer
accounts on both layers, called RollupAccL (where L stands for Layer 1 or
Layer 2) which are accessed through the smart contracts RollupSCL. The rollup
accounts serve to lock and unlock assets in sync, which is the rollup’s way to
maintain the sum of its assets on L1 and L2 constant.

To avoid discussion about lock/unlock vs. burn/mint, we assume that, on ini-
tialization, a huge fixed quantity of ETH2 is minted for (credited to) RollupAcc2.
These assets must be kept locked in this L2 account, only to be unlocked by an
equivalent lock transaction on L1. In this way asset invariance is preserved:
Balance(RollupAcc1) + Balance(RollupAcc2) = InitialQuantity, always.

Upwards from L1 to L2 When transferring assets from L1 to L2, there are
two alternatives. In the first alternative, RollupSC1 simply performs the trans-
action both on L1 as well as on the rollup data. This implies extra work for the
Sequencer who must ensure that the data on L2 is consistent with this state
change. Note that many rollups have implemented this procedure as an emer-
gency mechanism against censorship by Sequencers who refuse to include a user’s
transaction. This alternative has some advantages: atomicity is guaranteed by
L1, and transaction settlement time is short. But on the other hand, it makes
sequencing harder, and results in higher gas cost.

In the second alternative, the smart contract on L1 produces a proof of
transaction, sends it to the sequencer as a trigger for the transaction on L2.
The smart contract on L2 trusts L1 blindly, so this proof-of-transaction can just
be a simple L1 txid. Note that there are several ways L2 can receive the txid:
Sequencer monitors L1; Sequencer is warned by smart contract L1; Sequencer is
warned by Client X, etc.

In this alternative asset invariance is no longer guaranteed by atomicity. It
uses another principle: first destroy (lock, burn) the asset; create a proof of
this fact; then create (unlock, mint) the corresponding value elsewhere upon
handing over the proof, which is then destroyed. This principle is sound because
if, for some reason, the asset is not created, some party will have an economic
loss and thus has an incentive to complain. Whereas if it were the other way
around, some party might obtain assets for free and remain silent about it.

9

Fig. 4: L2 to L1

Downwards from L2 to L1 In this case, the Sequencer produces a proof of
transaction, sends it to RollupSC1, which triggers the transaction on L1. How-
ever, since L1 does not trust L2 blindly, this proof-of-transaction has to be a zk
proof. More specifically, it can provide a proof that the ETH2 lock transaction
is included in a transaction batch which has been finalized. Asset invariance is
again guaranteed through the first-destroy-then-create principle.

We now describe the process step by step in a scenario in which user X wants
to transfer z ETH from L2 to L1, in which subscripts denote the layer. This sce-
nario is also depicted in Figure 4.

PROTOCOL 1: Withdraw – transfer z ETH from L2 to L1

1. RollupSC2: tx2 := TransferAsset2(X2, RollupAcc2, z)
2. Wait for settlement of the rollup data on L1;
3. Sequencer+zkVM: zkPr := “tx2 is in txBatch AND txBatch has been settled”;
4. Sequencer: Send zkPr to RollupSC1
5. RollupSC1 :TransferAsset1(RollupAcc1, X1, z)
6. Wait for settlement of tx1 on L1.

5 From vertical to horizontal asset transfer

5.1 Summary of assumptions and properties inherited

We now list assumptions and properties of a downward transaction in a zk rollup.

1. There exists a reference implementation for transaction processing.
2. There exist mechanisms to make sure that the Sequencer follows this refer-

ence implementation.
3. The Sequencer has access to a zkProver, who uses a zkVM to produce zk

proofs.
4. The zk proof statements are zk proof-of-transaction, all related to transaction

of the zk rollup.

10

5. No transaction are rolled back (for those blockchains for which forking can
take place, this can be guaranteed by waiting sufficiently many blocks).

6. The rollup includes smart contracts running on L2 and L1.
7. All software is correct.

5.2 The crucial step: taking advantage of the zkVM
So in Protocol 1, the zk proof-of-transaction works like a certified cheque. It
guarantees that assets have been destroyed (locked, burnt) on L2 so they can be
redeemed on L1. Of course, measures should be taken to assure that a cheque
can be cashed only once. Maintaining a list of previously cashed cheques is good
solution (combined with expiration dates to avoid that the list grows forever).

In the context of a zk rollup, the statement proven is strictly related to the
rollup. By applying verifiable computing on the state transition function, it
is possible to prove that the Sequencer indeed computed newState2 correctly
from oldState2 and txBatch, and this is confirmed on L1 by RollupSC1.

However, the fact that the Sequencer has access to a zkVM means that it is
possible to prove more general statements about the state of the rollup data. For
instance, it is possible to generate proofs for statements such as “Transaction tx
has been finalized” (without involving the whole batch), or “At block height T
user account X2 had 10000 ETH2 in its account”.

Observe that the statements in these examples are all relative to L2 and the
rollup. But it is also possible to be even more general, and to generate a zk proof
about some transaction on chain A and send it to chain B. This what we show
in the next section.

6 Horizontal asset transfer from chain A to chain B

6.1 Cross-chain transfer – A to B
Suppose we want to transfer assets from base chain A1 to B1. We just saw how
zk proofs can be used as proof-of-transcation downwards from L2 to L1. We now
want to apply this same idea by sending zk proofs-of-transaction horizontally,
from A to B. The reverse direction can be obtained trivially by inverting the
roles of A and B.

For concreteness let us consider Bitcoin and Ethereum. Since we have two
different base chains, an atomic transaction is out of the question, so we resort
to first-destroy-then-create. We can use Protocol 1, but substituting L2 for A1
(source) and L1 for B1 (destination). The proof of transaction will be a zk proof,
which acts like a certified cheque showing that assets have been destroyed on
A1.

How can one convince ETH that some asset destruction transaction tx on
BTC indeed has taken place? Neither chain has a priori any reason to believe
anything coming from the outside or from another chain; this is counter to the
trust assumption of a blockchain. But both will accept a full-fledged zk proof
that a transaction has been settled on the other chain.

There are two strategies to do this.

11

Fig. 5: Two methods to prove settlement on a base chain: (a) proving a hash
chain all the way back to the genesis block; (b) proving a hash chain exists for
many block after the transaction.

Backward zk proof-of-Transaction: Mina uses linear recursive proofs to
seal all the information on its blockchain, an infinitely growing structure, down
to a constant size [1]. This works because one knows the genesis block and one
knows what constitutes a valid transaction, which can be captured and verified
using zk proofs. And by using proof recursion one can guarantee that proof size
does not increase. Mina started before zkVMs existed, so specific SNARKs have
been developed to make this idea work. Today we can take advantage of a zkVM,
which greatly simplifies this task.

Suppose a smart contract on ETH has the genesis block of BTC hard-coded
in it. Then one can do the following: the transaction data is sent to a zkProver
who, using recursive proof techniques, produces a zk proof of settlement. tx and
zk proof get send to the smart contract on ETH, which verifies and accepts. Since
this proves that some asset has been destroyed on A1, the creation of equivalent
value on some other chain is authorized, thus ensuring asset invariance.

However, this does not prove that tx has been settled (that no rollback took
place). For this reason, the next strategy is preferable.

Forward zk proof-of-Transaction: Say tx is included in block M. We wait N
blocks, where N is sufficiently large to guarantee that no rollback has taken place.
The hash of the block M+N is included in the zk proof-of-transaction. Suppose
that zkProver understands the logic of BTC settlement, maybe by using a light
client for payment verification. Therefore it can generate a proof that

1. tx is included in block[M],
2. hash[M] is computed correctly, and
3. hash[M+N] is computed correctly.

12

The reason why this constitutes a zk proof that tx has been settled is this: if
somebody could falsify such a proof, this would be equivalent to developing an
alternative fork for BTC, which, by assumption, is impossible. By using proof
recursion techniques this proof can be succinct, a couple of hundred bytes.

We call the protocol obtained by moving Protocol 1 from the L2-L1 scenario
to the A1-B1 scenario an entangled rollup since it entangles base chain A
and B. The transfer accounts on A and B to maintain asset invariance in this
context are called shadow accounts, while the two corresponding smart contracts
are called shadow contracts. This leads to the following protocol.

PROTOCOL 2: Transfer z ETH from A to B – entangled rollup

1. ShadowSCA: txA := TransferAssetA(XA, ShadowAccA, z)
2. Wait for settlement of the rollup data on A;
3. Sequencer+zkVM: zkPr := “txA has been settled”;
4. Sequencer: Send zkPr to ShadowSCB

5. ShadowSCB :TransferAssetB(RollupAccB , XB , z)
6. Wait for settlement of txB on B.

6.2 Assumptions and properties of the entangled rollup

The entangled rollup presented in Protocol 2 realizes cross-chain asset trans-
fer from A1 to B1 from a zk rollup, without introducing an intermediate entity
or additional trust assumption. This can be verified by consulting the list of
assumptions and properties inherited from protocol 1 (see 5.1. The only differ-
ence is Property 4, since now the zk proof statements are no longer restricted
to transactions on the rollup, but related to settlement of transactions on the
source chain A. So the entangled rollup inherits all the properties of the zk rollup,
including those related to correctness.

6.3 Generalizations

For concreteness, the example above used a BTC-to-ETH transaction, but it is
clear that transactions between other currencies is possible, provided that the
following conditions are satisfied:

1. It is possible to implement an algorithm which shows that a transaction on
the source chain has been settled. For instance, in the case of Byzantine
Agreement protocols this algorithm may include verification of a handful of
digital signatures from the trusted parties.

2. The destination chain has a sufficiently powerful virtual machine to imple-
ment a zk Verifier snmart contract.

So, even though reversing the transaction from B1 to A1 in principle is not
a problem, in the case of ETH to BTC it is, since the Script language of BTC
is not sufficiently powerful to implement a zkVerifier. The BitVM project is an

13

Table 1: Summary of what constitutes a proof-of-transaction for all transaction
types discussed in this paper

tx type proof of tx comment

L1-L1 txId RollupSC1 has direct access to L1 transactions.

L2-L2 txId RollupSC2 has direct access to L2 transactions.

L1-L2 txId RollupSC2 has indirect access to L1 transactions since
RollupSC1 can communicate this information.

L2-L1 zk proof RollupSC1 does not have direct access to the L2 trans-
action since the data is compressed and stateRoot is a
hash. So it needs a zk proof from Sequencer.

A1-B1 zk proof ShadowSCB1 has no access to A1’s transactions, so it
needs a zk proof from SequencerA that tx has been set-
tled.

A2-B2 zk proof ShadowSCB2 has no access to A2’s transactions, so it
needs a zk proof from SequencerA that tx has been set-
tled.

effort to solve this problem by using a philosophy similar to optimistic rollups.
See [10].

Using pairwise entangled rollups it will be possible to connect base chains
such as BTC, ETH, AVE, etcȧllowing asset transfer using zk proofs as proof-of-
transaction. However, this vision has a problem, which we address in the section
on liquidity optimization.

6.4 Parallel rollup: different blockchains sharing the same rollup

Yet another, promising generalization is this. Given a small number of blockchains,
another interesting possibility is to implement a zk rollup in parallel on each un-
derlying blockchains. In other words, one L2 with a rollup, whose rollup data is
maintained on several different L1s, as depicted in diagram XXX. In this case we
assume that all transaction requests must first go to the Sequencer. Of course,
all copies of the rollup data have to be identical.

For this parallel rollup, we can imagine a warped asset that’s pegged to the
asset of some L1, or that a separate (meta)asset is created. Yet another possibility
is that the rollup is extended to deal with multiple assets at the same time.
After all, a rollup just implements the functionality of a ledger, and multiple
currencies can be accommodated by adding an additional field specifying the
type of currency. See Figure 6.

14

Fig. 6: Schematic view of a parallel rollup with multiple L1s and L2. Rollup data
sent down to the L1s is identical; interaction with the L2s is individual.

7 Liquidity optimization

In the previous section we showed that asset transfer between two L1 blockchains
is possible. However, there might be a liquidity problem. Suppose we have an
asset, like USDT, and suppose that a client on A1 wants to transfer 10000 USDT
to his account on B1. Then it is necessary that ShadowAccB , the shadow account
on B1, has at least 10000 USDT in reserve, otherwise the transaction cannot be
completed since there is not sufficient liquidity on B1. This situation is similar to
exchanging cash currency on the airport: the exchange may not have the desired
currency available for you to buy.

However, if we consider the same transaction between two L2s, things may be
different. The shadow contract on A2 just needs to destroy 10000 USDT, while
the shadow contract on B2 needs to create 10000 USDT. But since the currency
on L2 is virtualized (pegged, wrapped), and assuming that one entity controls
USDT on both A2 and B2, then this entity can simply perform this transaction
without needing the real backing of USDT. Since both transactions take place
on L2, asset destruction and creation is simply an accounting trick, it doesn’t
have to be backed by real assets, so there is no liquidity problem.

This is, in essence, the idea of liquidity optimization. Imagine that a cur-
rency such as USDT appears on several L2s: USDT-ETH, USDT-AVE, USDT-
SOL, USDT-ALGO, ... Then by using entangled rollups it is straightforward to
transfer from one L2 to another. So instead of having liquidity fragmentation, in
which assets are stuck on some chain and transfers among them are restricted by
asset reserves, now assets can flow easily from one L2 to another, offering unified
access and higher liquidity. To make the point, having 1000 USDT deposited
on Ethereum and 1000 USDT deposited on Avalanche turns into 2000 USDT of
usable liquidity across all Layer 2s.

15

Observe that, for this to work, we must assume that the same entity controls
the cryptocurrency on the two L2s. If this isn’t the case, liquidity optimization
will not work. As a (counter)example, we are not claiming that one can simply
transfer Arbitrum’s ARB into Optimism’s OP; without additional provisions
this will be impossible.

8 Anonymity in transactions

Note that the data in zk proof, such as source address, destination address,
amount, etc. is revealing and can be subject to chain analysis. If we want to
obtain privacy, these fields can be concealed using encryption or hash function.
For instance, suppose that the zk proof-of-Transaction contains the hashes of
source, dest, and amount, and the zk proof is sent to the user, to be redeemed
elsewhere. This serves now as an anonymized certified check. The user can now
go to another chain, open the dest and the amount values in a private interaction
with B Sequencer, show that dest and amount, if hashed, equal the hashed values
contained in the proof, and redeem the amount. This allows us to implement
privacy guarantees comparable to zcash [4].

9 Open questions

Besides Entangled Rollups, there are other interesting applications of a zkVM
and other sophisticated variants of rollups imaginable.

Prove zk correctness for one single transaction only Suppose that some
transaction is independent of others (it has no side effects), that the transaction
is correct (we can prove this using a zkProof), and that the batch has been
finalized. Could this lead to shorter prover time for that specific transaction?
For instance, one could imagine that the Sequencer cut its computation in slices,
where each slice contains exactly one entire transaction. So each transaction will
be sandwiched between an initial and final snapshot of the computation, where
each snapshot is stored independently. By making these snapshots available on
request, the transaction can be verified, either by some other party or by applying
a zkProof to the slice only. This may all seem very ambitious, but compared
to slicing zkVM proofs, parallelizing them and recombining the proofs of the
slices it is nothing. This idea could lead to a differentiated treatment of selected
transactions (such as high-value ones).

Identify a subclass of simple and fast transactions We conjecture that a
significant percentage of transactions all have the same, simple format, without
running a sophisticated smart contract. So for these transactions, correctness ver-
ification should be easy (no need to run the full zkVM), and could be optimized
for this specific case. We can imagine L2 maintaining two separate transaction
queues, leading to two separate batches: one queue (FAST) containing these

16

simple transactions, and another (NORMAL) allowing any format. This could
reduce the traditional 7-day withdrawal period associated with OP Rollups to a
matter of hours when such transactions gain a zkProof.

Proving asset correctness for L2 Instead of a full-fledged zkProof that
the whole batch was processed correctly, we prove in zk that asset correctness
is maintained by each and every transaction in the batch. This approach would
require much simpler and faster proofs for transactions in the FAST queue,
and could be combined with a traditional optimistic rollup. Transactions in the
NORMAL queue would continue to be proved with usual zkVM proofs.

Acknowledgement The author is grateful to Lucas Fraga, Stephen Duan,
Pavel Sinelnikov and Ming Guo for discussions that helped him to understand
this topic and write this paper.

References

1. Mina: Decentralized Cryptocurrency at Scale.
https://minaprotocol.com/wp-content/uploads/technicalWhitepaper.pdf.

2. Unspent transaction output.
https://en.wikipedia.org/wiki/Unspent_transaction_output.

3. Vulnerabilities in Cross-chain Bridge Protocols Emerge as Top Security Risk.
https://www.chainalysis.com/blog/cross-chain-bridge-hacks-2022/.

4. Zcash. https://z.cash.
5. Vitalik Buterin. An incomplete guide to rollups.

https://vitalik.eth.limo/general/2021/01/05/rollup.html.
6. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity

of interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.
7. Jens Groth. On the size of pairing-based non-interactive arguments

https://eprint.iacr.org/2016/260.pdf.
8. Jens Groth. On the size of pairing-based non-interactive arguments. IACR

Cryptol. ePrint Arch., page 260, 2016.
9. Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and

Edward W. Felten. Arbitrum: Scalable, private smart contracts. In William Enck
and Adrienne Porter Felt, editors, 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018, pages 1353–1370.
USENIX Association, 2018.

10. Robin Linus. BitVM 2: Permissionless Verification on Bitcoin.
https://bitvm.org/bitvm2.html.

11. Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang,
Yongzheng Jia, Dan Boneh, and Dawn Song. zkbridge: Trustless cross-chain
bridges made practical. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pages 3003–3017, 2022.

https://minaprotocol.com/wp-content/uploads/technicalWhitepaper.pdf
https://en.wikipedia.org/wiki/Unspent_transaction_output
https://www.chainalysis.com/blog/cross-chain-bridge-hacks-2022/
https://z.cash
https://vitalik.eth.limo/general/2021/01/05/rollup.html
https://eprint.iacr.org/2016/260.pdf
https://bitvm.org/bitvm2.html

	Cross-chain asset transfer from zk rollups without additional security assumptions

