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Abstract

In September of 2023, ZKM Research started developing a zkVM for the MIPS instruc-
tion set and processor architecture. This paper presents a high-level description of the sys-
tem and software architecture, including the rationale for the most important design decisions.
zkMIPS is available in github.com/zkMIPS/zkm and more about ZKM can be found in zkm.io.

1 Introduction

A zkVM is a primitive which permits one party A to outsource a computation to another (computa-
tionally more powerful) party B in a verifiable manner. The output computed by B comes with a proof
(or seal) that the result was computed correctly. In the case of zkMIPS, the program to be executed is
specified using a subset of MIPS instruction set, possibly after compilation from some other language.

A valid computation can be interpreted as a sequence of valid states, which can be compiled to a
table whose columns represent CPU variables and rows represent steps of the computation process.
This table is known as the trace record (or trace). Moving from one row of the trace to the next rep-
resents a state transition, which must correspond to a valid computation step. In this setup, verifying
the correctness of a computation is equivalent to verifying the transition between each pair of subse-
quent rows of the trace record. One way to make this verification more efficient is to encode the entire
trace record as a mathematical object, usually a polynomial, in a process called arithmetization.

Another important building block for zkVMs is the routine run between A and B to help the
verification of the desired polynomial properties. The polynomial resulting from the arithmetization
process is usually of the size (degree) of the program being proved, meaning verifying this polynomial
naively has roughly the same complexity of verifying the program itself. To optimize this process, the
parties involved engage in several rounds of a challenge-response game where B sends some commitment
data to A, A makes a challenge to B, and B responds to it. Using the data provided by B beforehand
and the responses to their queries, A can convince themself that B did not cheat along the way.

The range of IOPs used for succinct verification is somewhat small, but the range of arithmetiza-
tion techniques is large and choosing among them is not easy. In the first place, the mathematical
theories involved are highly abstract, not easy to comprehend, and often there is no consensus ter-
minology among works in the area. This is aggravated by the fact that what is described in a paper
is not necessarily what has been implemented, while these digressions often are not well-documented.
One either has access to high-level theoretical papers or low-level access to existing open-source li-
braries that contain very little documentation on an intermediate level. Of course, these low-level
libraries are highly relevant in order to reduce development time while obtaining good performance.

The main purpose of this paper is to describe this confusing landscape in detail, and discuss the
choices made by the zkMIPS team. This document covers the theoretical aspects of the arithmetization
models and IOPs used in zkMIPS, as well as the design choices made during the development process.
Where theory and practice do not align, we opted to privilege the way the protocol is implemented and
often ignore details that are better explained in the original papers. In other words, this work aims to
enlighten developers by plugging the gap between papers and code. We provide this kind of information
as guidance and we believe that it will be intrinsically useful for the community, independent of zkMIPS.
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Comparison to other works

The past 2-3 years have seen the rise of numerous projects with similar objectives to zkMIPS’s. zkEVMs
such as zkSync[15], Scroll[25], Polygon Miden[19] and Taiko[28], implement verifiable computing for
Ethereum’s EVM bytecode, while zkVMs such as Zilch[7], o1VM[17], RISC0[22], Jolt[3], SP1[27] and
Valida[29] implement verifiable computing for off-chain instruction set architecture (ISA). Some zkVMs
define their own ISA, while others are based on real-world ISAs such as MIPS[16] and RISC-V[21].

We chose MIPS over RISC for a variety of reasons. First, it is open-source and has been around
for 40 years with a strong presence in industry. Almost any language can compile to some variation
of the MIPS ISA, making the range of MIPS applications go from legacy to IoT. The MIPS-R3000[11]
variation, in particular, has not changed over time and is considered one of the most reliable ISAs,
unlike EVM bytecode (have frequent minor opcode changes) or RISC-V (allows custom instructions).
As a result of this popularity and stability one could say anything compiles to MIPS and MIPS compiles
to anything, which give us a reasonable advantage over zkVMs based on other architectures.

Zilch[7] and o1VM[17] are the only other MIPS-based zkVMs we are aware of (most of the other
zkVMs are LLVM or RISC-based). Zilch has been around since before zkMIPS development and it
was used as a study-case for our design. It was written with the libSTARK[13] library, making it fully
STARK-based, and restricts itself to a MIPS subset called zMIPS. Besides the VM, Zilch defines a vari-
ation of Java programming language called ZeroJava, and implements a ZeroJava to zMIPS compiler.
O1VM, on the other hand, is more recent and based on good zkVM practices established after Zilch.

Structure of the paper

Section 2 describes the MIPS architecture as specified by zkMIPS codebase, which includes certain
assumptions for the sake of simplification. Section 3 gives a general description of arguments-of-
knowledge, specially SNARK and STARK, which might serve as an introduction to ZK for those
not familiar with the concept of cryptographic proofs. The content of the previous two sections
come together in a description of the zkMIPS proving architecture given in Section 4. Finally,
Section 5 discusses the performance of the current zkMIPS implementation.

2 MIPS architecture

The Microprocessor without Interlocked Pipelined Stages (MIPS) is a well-known and widely adopted
class of 32/64-bit computer architectures developed by MIPS Computer Systems. The 32-bit specifica-
tion is a big-endian, register-based architecture with 32 general purpose registers (GPRs) of 32-bit
each, allocated according to Table 1, and a 4GB memory addressed by 232 words of 4 bytes each.

Variable Name Description Size

R0 Zero Always contains 0 u32
R1 AT Assembler temporary u32

R2..R3 V0..V1 Return values u32
R4..R7 A0..A3 Parameters values u32
R8..R15 T0..T7 Temporary values u32
R16..R23 S0..S7 Saved values u32
R24..R25 T8..T9 Temporary values u32
R26..R27 K0..K1 Reserved for kernel u32

R28 GP Global pointer u32
R29 SP Stack pointer u32
R30 S8 Saved values u32
R31 RA Return address u32

Table 1: General Purpose Registers
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In general, MIPS programs operate on a 32-bit cycle counter, a 32-bit program counter represent-
ing the memory address of the current instruction (optionally, the next value of this counter might
be stored in a separate register), 32-bit high and low results for 32-bit multiplication and division
operations, an exit boolean, and an 8-bit exit flag. In addition to these, zkMIPS also operates over a
32-bit representation of the memory state defined as the Poseidon-based[14] Merkle root whose leaves
correspond to 4KB memory pages. A list of all variables contained in zkMIPS state is given in Table 2.

Variable Name Description Size

Cycle Cycle counter Counts how many instructions have been processed u32
PC Program counter Points to the address of current instruction u32

NextPC Next program counter Points 32 bits past address of current instruction u32
HI High

Multiplication and division results
u32

LO Low u32
Exited Exit flag Indicates program finalization bool

ExitCode Exit code Indicates program finalization status u8
R0 Zero Always contains 0 u32
. . . . . . . . . . . .
R31 RA Return address u32

MemRoot Memory state root Merkle tree of current memory state u8[32]

Table 2: CPU state

This memory state representation is necessary to track changes in the memory and guarantee mem-
ory consistency during the execution of the VM. Furthermore, all variables included in intermediary
states of the MIPS VM (i.e. counters, high/low results, and exit variables) are recorded in memory
after each cycle. This approach allows steps of the execution of this VM to be described more eas-
ily because only those CPU states variables that have changed in a given transition are recorded in
memory, while those that have not changed will have their consistency ensured by memory constraints.

The constraints that ensure memory consistency are created in parallel to changes in CPU states.
This approach is possible because even though these constraints model changes in the memory space
modified by the VM, their consistency depends only on the hash used to compute the Merkle tree.
How this and several other parallel procedures run in zkMIPS will be explained in Section 4.
In Section 2.1 we delimit and describe the subset of MIPS instructions supported by zkMIPS CPU.

2.1 Instructions

zkMIPS supports a subset of 71 MIPS instructions of 32 bits each. The first or the last 6 bits of an
instruction are used for identification. The first 6 bits of an instruction are called the opcode and, when
an instruction has opcode 000000, its last 6 bits are called funct. The values contained in the opcode
and funct fields define the syntax and the semantics of each instruction. MIPS instructions have four
possible syntax formats, namely the R, I, J and special-formats. Instructions that have functs are
usually of the R or the Special-formats, and instructions that do not are of the I or the J-formats.

The 20 bits between opcode and funct of R-format instructions are divided into four 5-bit fields,
with the first two encoding input registers, the third encoding an output register, and the last encoding
an extra input for some instructions. The last 26 bits of I-format instructions are divided into two
5-bit fields encoding two inputs or one input and one output registers, and one 16-bit field encoding a
half-word input. The last 26 bits of J-format instructions encode one single input. There is also one
special-format for instructions that invoke system events, this one with the last 6 bits encoding a funct
field and the middle 20 bits encoding one single input. This scheme is illustrated in Table 3.

The 71 MIPS instructions supported by zkMIPS belong to 7 original MIPS instruction categories,
namely arithmetic, branch and jump, load/store and memory, logic, move, shift and trap, as described
in Tables 4 to 10 and listed in Table 11. These categories relate to how instructions are modeled in
zkMIPS, as explained in Section 4.3.

Instructions from the arithmetic category perform arithmetic operations over 32-bit values stored
in input registers (R-format instructions) or signed 16-bit inputs (I-format instructions). These 16-bit
inputs are extended to 32-bit inputs according to their sign (the sext function from Table 4 represents
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Type
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
[31..26] [25..21] [20..16] [15..11] [10..6] [5..0]

R opcode rs rt rd shamt funct
I opcode rs rt imm(ediate)
J opcode addr(ess)

Special opcode code funct

Table 3: Syntax of MIPS instruction

a signed extension). The same happens for signed 16-bit inputs from branch and jump instructions
and for some from load/store and memory instructions (see Tables 5 and 6, respectively). Unsigned
16-bit inputs from remaining load/store and memory instructions are handled differently; they can be
simply extended with zeros (the zext function from Table 6 represents a zero extension).

# Name Syntax Semantics

1 ADD 000000 rs rt rd 00000 100000 gpr[rd] = gpr[rs] + gpr[rt]
2 ADDI 001000 rs rt imm gpr[rt] = gpr[rs] + sext(imm)
3 ADDIU 001001 rs rt imm gpr[rt] = gpr[rs] + sext(imm)
4 ADDU 000000 rs rt rd 00000 100001 gpr[rd] = gpr[rs] + gpr[rt]
5 CLO 011100 rs rt rd 00000 100001 gpr[rd] = count leading ones(rs)
6 CLZ 011100 rs rt rd 00000 100000 gpr[rd] = count leading zeros(rs)
7 DIV 000000 rs rt 00000 00000 011010 (hi, lo) = gpr[rs]/gpr[rt]
8 DIVU 000000 rs rt 00000 00000 011011 (hi, lo) = gpr[rs]/gpr[rt]
9 MUL 011100 rs rt rd 00000 000010 gpr[rd] = gpr[rs]× gpr[rt]
10 MULT 000000 rs rt 00000 00000 011000 (hi, lo) = gpr[rs]× gpr[rt]
11 MULTU 000000 rs rt 00000 00000 011001 (hi, lo) = gpr[rs]× gpr[rt]
12 SLT 000000 rs rt rd 00000 101010 gpr[rd] = gpr[rs] < gpr[rt]
13 SLTI 001010 rs rt imm gpr[rt] = gpr[rs] < sext(imm)
14 SLTIU 001011 rs rt imm gpr[rt] = gpr[rs] < sext(imm)
15 SLTU 000000 rs rt rd 00000 101011 gpr[rd] = gpr[rs] < gpr[rt]
16 SUB 000000 rs rt rd 00000 100010 gpr[rd] = gpr[rs]− gpr[rt]
17 SUBU 000000 rs rt rd 00000 100011 gpr[rd] = gpr[rs]− gpr[rt]

Table 4: Syntax and semantics of arithmetic instructions

Instructions from the branch and jump category modify the PC according to signed 16-bit inputs
(I-format branch instructions), unsigned 26-bit inputs (J-format jump instructions) or 32-bit values
stored in registers (R-format jump instructions). Signed 16-bit inputs correspond to instruction indexes
relative to the current PC, while unsigned 26-bit inputs and 32-bit values stored in registers corre-
spond to absolute instruction indexes. Since memory is byte-aligned and the PC corresponds to the
address of the current instruction, instruction indexes must be converted to the instruction addresses.
To do so, signed 16-bit instruction indexes are shifted 2 bits to the left, then extended and added to PC
so they can address memory positions within the 217 bytes (128kB) memory range from the current
PC. Analogously, unsigned 26-bit instruction indexes are padded with 2 zeros to encode byte-aligned
addresses instead of word-aligned, and then appended to the first 6 bytes from PC so they can address
memory positions within the 218 bytes (256MB) memory region the current PC points to.

Instructions from the load/store category perform memory operations based on input or output
registers, base memory positions stored in registers and 16-bit memory offsets (I-format instructions).
Values loaded from memory can be signed or zero extended, depending on the opcode. The memory
position from which bytes, half-words or words are loaded is given as an unrestricted byte index,
meaning they can be loaded from byte indexes inside memory words (one can load the byte sequence
[0x06,0x09] as a word even though it intersects different memory words, [0x04,0x07] and [0x08,0x0a]).
In addition to that, left or right halves of registers can be loaded or stored while maintaining the
other half unchanged, and there are instructions to lock memory position atomically. For a better
comprehension on how load/store and memory instructions are defined, we refer to MIPS Manual[16].
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# Name Syntax Semantics

18 BAL 000001 00000 10001 imm procedure call

19 BEQ 000100 rs rt imm gpr[rs] = gpr[rt] ⇒ PC = PC+ sext(imm << 2)
20 BGEZ 000001 rs 00001 imm gpr[rs] ≥ 0 ⇒ PC = PC+ sext(imm << 2)
21 BGTZ 000111 rs 00000 imm gpr[rs] > 0 ⇒ PC = PC+ sext(imm << 2)
22 BLEZ 000110 rs 00000 imm gpr[rs] ≤ 0 ⇒ PC = PC+ sext(imm << 2)
23 BLTZ 000001 rs 00000 imm gpr[rs] < 0 ⇒ PC = PC+ sext(imm << 2)
24 BNE 000101 rs rt imm gpr[rs] ̸= gpr[rt] ⇒ PC = PC+ sext(imm << 2)
25 J 000010 addr PC = PC[31..28]||addr||00
26 JAL 000011 addr gpr[31] = PC+ 8

PC = PC[31..28]||addr||00
27 JALR 000000 rs 00000 rd shamt 001001 gpr[rd] = PC+ 8

PC = rs
28 JR 000000 rs 00000 00000 shamt 001000 PC = gpr[rs]

Table 5: Syntax and semantics of branch and jump instructions

# Name Syntax Semantics

29 LB 100000 rs rt imm gpr[rt] = sext(mem[gpr[rs] + imm])
30 LBU 100100 rs rt imm gpr[rt] = zext(mem[gpr[rs] + imm])
31 LH 100001 rs rt imm gpr[rt] = sext(mem[gpr[rs] + imm : gpr[rs] + imm+ 1])
32 LHU 100101 rs rt imm gpr[rt] = zext(mem[gpr[rs] + imm : gpr[rs] + imm+ 1])
33 LL 110000 rs rt imm gpr[rt] = mem[gpr[rs] + imm : gpr[rs] + imm+ 3]
34 LW 100011 rs rt imm gpr[rt] = mem[gpr[rs] + imm : gpr[rs] + imm+ 3]
35 LWL 100010 rs rt imm gpr[rt][31 : 16] = mem[gpr[rs] + imm : gpr[rs] + imm+ 1]
36 LWR 100110 rs rt imm gpr[rt][15 : 0] = mem[gpr[rs] + imm− 1 : gpr[rs] + imm]
37 PREF 110011 rs rt offset∥0 000000 prefetch memory(gpr[rs] + offset)
38 RDHWR 011111 00000 rt rd 00∥sel 111011 gpr[rt] = hwr[rd]
39 SB 101000 rs rt imm mem[rs+ imm] = gpr[rt][7 : 0]
40 SC 111000 rs rt imm rt = 1 ⇒ mem[gpr[rs] + imm : gpr[rs] + imm+ 3] = rt

gpr[rt] ̸= 1 ⇒ gpr[rt] = 0
41 SDC1 111101 rs rt imm memory[base+ offset] = ft

42 SH 101001 rs rt imm mem[gpr[rs] + imm : gpr[rs] + imm+ 1] = gpr[rt][15 : 0]
43 SW 101011 rs rt imm mem[gpr[rs] + imm : gpr[rs] + imm+ 3] = gpr[rt]
44 SWL 101010 rs rt imm mem[gpr[rs] + imm : gpr[rs] + imm+ 1] = gpr[rt][31 : 16]
45 SWR 101110 rs rt imm mem[gpr[rs] + imm− 1 : gpr[rs] + imm] = gpr[rt][15 : 0]

Table 6: Syntax and semantics of load/store and memory instructions

Instructions from the logic category perform usual logic operations over 32-bit values stored in
input registers (R-format instructions) or 16-bit inputs (I-format instructions). In addition to these
operations, the logic category also features an instruction to load 16-bit inputs (I-format instructions) to
the upper-most half of a GPR. Instructions from the move category copy 32-bit values between GPRs
(R-format instructions), or between general-purpose and high/low registers. Instructions from the
shift category perform arithmetic or logical shifts over GPRs, according to 5-bit values stored in input
registers or shamt fields (R-format instructions). Finally, instructions from the trap category invokes
special kernel functions according to 32-bit values stored in input registers (R-format instructions) or
20-bit inputs (special-format instructions). For details we refer to [16].
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# Name Syntax Semantics

46 AND 000000 rs rt rd 00000 100100 gpr[rd] = gpr[rs] ∧ gpr[rt]
47 ANDI 001100 rs rt imm gpr[rt] = gpr[rs] ∧ imm

48 EXT 011111 rs rt rd shamt 000000 gpr[rt] = gpr[rs][shamt+ gpr[rd] : shamt]
49 LUI 001111 00000 rt imm gpr[rt] = imm << 16

50 NOR 000000 rs rt rd 00000 100111 gpr[rd] =!(gpr[rs] ∨ gpr[rt])
51 OR 000000 rs rt rd 00000 100101 gpr[rd] = gpr[rs] ∨ gpr[rt]
52 ORI 001101 rs rt imm gpr[rt] = gpr[rs] ∨ zext(imm)
53 SEB 011111 00000 rt rd 10000 100000 gpr[rd] = sext(gpr[rt][7 : 0])
54 SEH 011111 00000 rt rd 11000 100000 gpr[rd] = sext(gpr[rt][15 : 0])
55 WSBH 011111 00000 rt rd 00010 100000 gpr[rd] = gpr[rt][23 : 16]||gpr[rt][31 : 24]||

gpr[rt][7 : 0]||gpr[rt][15 : 8]
56 XOR 000000 rs rt rd 00000 100110 gpr[rd] = gpr[rs]⊕ gpr[rt]
57 XORI 001110 rs rt imm gpr[rt] = gpr[rs]⊕ zext(imm)

Table 7: Syntax and semantics of logic instructions

# Name Syntax Semantics

58 MFHI 000000 00000 00000 rd 00000 010000 gpr[rd] = hi

59 MFLO 000000 00000 00000 rd 00000 010010 gpr[rd] = lo

60 MOVN 000000 rs rt rd 00000 001011 gpr[rt] ̸= 0 ⇒ gpr[rd] = gpr[rs]
61 MOVZ 000000 rs rt rd 00000 001010 gpr[rt] = 0 ⇒ gpr[rd] = gpr[rs]
62 MTHI 000000 rs 00000 00000 00000 010001 hi = gpr[rs]
63 MTLO 000000 rs 00000 00000 00000 010011 lo = gpr[rs]

Table 8: Syntax and semantics of move instructions

# Name Syntax Semantics

64 SLL 000000 00000 rt rd shamt 000000 gpr[rd] = gpr[rt] << shamt

65 SLLV 000000 rs rt rd 00000 000100 gpr[rd] = gpr[rt] << gpr[rs][4 : 0]
66 SRA 000000 00000 rt rd shamt 000011 gpr[rd] = gpr[rt] >> shamt

67 SRAV 000000 rs rt rd 00000 000111 gpr[rd] = gpr[rt] >> gpr[rs][4 : 0]
68 SRL 000000 00000 rt rd shamt 000010 gpr[rd] = gpr[rt] >> shamt

69 SRLV 000000 rs rt rd 00000 000110 gpr[rd] = gpr[rt] >> gpr[rs][4 : 0]

Table 9: Syntax and semantics of shift instructions

# Name Syntax Semantics

70 TEQ 000000 rs rt code 110100 rs = rt ⇒ trap

71 SYSCALL 000000 code 001100 syscall

Table 10: Syntax and semantics of trap instructions
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# Name Description

1 ADD Add
2 ADDI Add Immediate Word
3 ADDIU Add Immediate Unsigned Word
4 ADDU Add Unsigned Word
5 CLO Count Leading Ones in Word
6 CLZ Count Leading Zeros in Word
7 DIV Divide Word
8 DIVU Divide Unsigned Word
9 MUL Multiply Word to GPR
10 MULT Multiply Word
11 MULTU Multiply Unsigned Word
12 SLT Set on Less Than
13 SLTU Set on Less Than Unsigned
14 SLTI Set on Less Than Immediate
15 SLTIU Set on Less Than Immediate Unsigned
16 SUB Subtract Word
17 SUBU Subtract Unsigned Word

(a) Arithmetic instructions

# Name Description

18 BAL Branch and Link
19 BEQ Branch on Equal
20 BGEZ Branch on Greater Than

or Equal to Zero
21 BGTZ Branch on Greater Than Zero
22 BLEZ Branch on Less Than or Equal to Zero
23 BLTZ Branch on Less Than Zero
24 BNE Branch on Not Equal
25 J Jump
26 JAL Jump and Link
27 JALR Jump and Link Register
28 JR Jump Register

(b) Branch and jump instructions

# Name Description

29 LB Load Byte
30 LBU Load Byte Unsigned
31 LH Load Halfword
32 LHU Load Halfword Unsigned
33 LL Load Linked Word
34 LW Load Word Left
35 LWL Load Word Left
36 LWR Load Word Right
37 PREF Prefetch
38 RDWHR Read Hardware Register
39 SB Store Byte
40 SC Store Conditional Word
41 SDC1 Store Doubleword from

Floating Point
42 SH Store Halfword
43 SW Store Word
44 SWL Store Word Left
45 SWR Store Word Right

(c) Load/store and memory instructions

# Name Description

46 AND And
47 ANDI And Immediate
48 EXT Extract Bit Field
49 LUI Load Upper Immediate
50 NOR Not Or
51 OR Or
52 ORI Or Immediate
53 SEB Sign Extend Byte
54 SEH Sign Extend Halfword
55 WSBH Word Swap Byte Halfword
56 XOR Exclusive Or
57 XORI Exclusive Or Immediate

(d) Logic instructions

# Name Description

58 MFHI Move From HI Register
59 MFLO Move From LO Register
60 MOVN Move Conditional on Not Zero
61 MOVZ Move Conditional on Zero
62 MTHI Move To HI Register
63 MTLO Move To LO Register

(e) Move instructions

# Name Description

64 SLL Shift Word Left Logical
65 SLLV Shift Word Left Logical Variable
66 SRA Shift Word Right Arithmetic
67 SRAV Shift Word Right Arithmetic Variable
68 SRL Shift Word Right Logical
69 SRLV Shift Word Right Logical Variable

(f) Shift instructions

# Name Description

70 TEQ Trap if Equal
71 SYSCALL System Call

(g) Trap instructions

Table 11: Instructions categories



3 Cryptographic proof systems

Cryptographic proof systems (or just proof system) can model algorithms as 2-party protocols in
contexts where one of the parties can run the underlying algorithm faster (B from Section 1) than the
other (A). Usually, the privileged party either has access to a more efficient computer or possesses
some secret information, and the resulting protocol allows this party to convince the other one that the
underlying algorithm can be executed correctly when run on an efficient computer or when fed with
secret information. For this reason, we denominate the convincing party the Prover, the convinced
party the Verifier, and the 2-party protocol they engage in a cryptographic proof (or just proof ).

Proof systems should be designed to optimize the interests of both the Prover and the Verifier.
On the Prover side, this means the proof succeeds (the Verifier is convinced) with high probability
when the Prover is faithfully following the protocol, i.e. it can execute the underlying algorithm
successfully and follows the protocol description correctly. This property is called completeness.
On the Verifier side, the proof system should guarantee the proof succeeds with negligible probability
when the Prover is maliciously engaged in the protocol, i.e. it cannot execute the underlying algorithm
successfully or it does not follow the protocol description. This property is called soundness.

To enable particular proof designs, the soundness of some proof systems may be restricted to
polynomial-time Provers, in which case we call the resulting protocol a cryptographic argument
(or just argument). Additionally, some proof systems may guarantee with high probability that the
Prover knows some information that allows it to run the underlying algorithm, in which case we call the
resulting protocol a proof-of-knowledge. When a proof system produces a protocol with these two
properties (it guarantees with high probability that a polynomial-time Prover knows some information
that allows it to run the underlying algorithm), we call the resulting protocol an argument-of-
knowledge. Since proofs and arguments are similar, we might use proof when referring to both.

The communication between Prover and Verifier, which includes public parameters and messages
exchanged during the protocol execution, is called the transcript. Formally, for a proof to be con-
sidered a proof-of-knowledge, there must exist an algorithm called Extractor that recovers the secret
information when given access to transcripts from equivalent but different instances of the same proof.
When a proof-of-knowledge keeps any secret information secure, we call it Zero-Knowledge (ZK).
Formally, for a protocol to be considered ZK, there must exist an algorithm called Simulator that
produces a fake transcript in a way to make it statistically indistinguishable from a real one.

Modern proofs are often required to run in time polynomial in the logarithm of the input to the
underlying algorithm. In other words, as this input sizeN increases, Prover and Verifier execution times
increase polynomially on log (N). When communication complexity is also polynomial on log (N), we
say the proof is succinct. Even though the ZK in zkVM means Zero-Knowledge, we stress that these
proofs are often only required to be succinct, meaning a protocol might not be private and still be
considered a zkVM because it is succinct. Modern proofs are also often required to be non-interactive,
meaning the Verifier can be convinced without direct interaction with the Prover. In this case, we use
the term proof to refer to the data produced by the Prover to indirectly convince the Verifier.

Non-interaction is useful when applying cryptographic proofs to distributed systems because it
allows one single Prover to convince multiple Verifiers with the same proof. Assuming non-random
values sent by the Verifier during an interactive proof can be deterministically computed by the Prover,
it can be made non-interactive by replacing random values chosen by Verifier with verifiable random
values chosen by the Prover, such as hash function outputs carefully queried using partial transcripts.
This technique, known as Fiat-Shamir transformation[1], can be applied to most interactive proofs.

The advent of blockchain technologies encouraged the development of succinct and non-interactive
arguments-of-knowledge, usually abbreviated to SNARKs. Originally, this term referred to a specific
proof system[23], but gradually began to refer to a range of proof systems targeting blockchain-related
verification whose properties often rely on some well-formatted public and random input called Com-
mon Reference String (CRS). The procedure to format this random input depends on the proof
system and is defined accordingly by means of an accompanied algorithm called Generator.

The need for running a Generator before the Prover makes it difficult to apply some proof systems
to the blockchain context, since the main principle of blockchain is decentralization. In practice,
the risk of a centralized Generator to cheat is mitigated by running an equivalent secure multi-party
computation, meaning the Generator is reformulated as a distributed protocol that produces the same
output. The main challenge here is to prove the correct execution of this protocol, which is still a
source of criticism to early blockchain projects that adopted SNARKs[31]. Furthermore, this protocol
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might need to be re-executed if the complexity of the statements that must be proven increases, since
the CRS produced by a Generator is capable of proving algorithms up to a certain number of steps.

In this context, new proof systems tried to address the requirements from this new age of cryp-
tographic proving applications. These proof systems are scalable and transparent (non-interactive)
arguments-of-knowledge, usually abbreviated to STARKs. As was the case for SNARKs, this term
referred to a specific proof system[8], but gradually began to refer to a range of similar proof systems.
The choice to privilege scalability and transparency over succinctness means proofs might be larger and
take longer to produce, but do not rely on a Generator. Instead, they rely on reasonable cryptographic
assumptions (transparency) and can be generated despite the algorithmic complexity (scalability).

zkMIPS employs variations of the STARK[8] and PLONK[4] (SNARK) proof systems, as well as
Groth16[12] (SNARK) and the latest version of the LogUp[26] protocol. STARK, PLONK and Groth16
are general-purpose arguments-of-knowledge, whereas LogUp is an argument for the correspondence
between two public vectors (in the actual proving procedure, LogUp is used to combine smaller STARK
proofs). The zkMIPS proving procedure is recursive and divided into four layers, as illustrated in
Figure 1. STARK, LogUp and PLONK generate proofs in the first three layers, in that order, whereas
Groth16 is used to generate proofs in an optional layer whenever the final proof must be verified
on-chain.
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Figure 1: Cryptographic proof systems in zkMIPS architecture

Mandatory proofs are written[32] using the Plonky2[20] framework, which implements in Rust
variations of the STARK and PLONK proof systems (the LogUp from the second layer is implemented
as a STARK proof). In other words, we use this library to write the Prover, compile it using a Rust
compiler, and produce the actual proofs passing a MIPS program as input to the compiled Prover.
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These proofs can be verified with a program written in Rust using the same library. Optional proofs are
written[33] using the GNARK[6] library, and can be verified with a smart-contract written in Solidity.

The STARK and PLONK variations implemented by Plonky2 are called Starky and Plonky, re-
spectively. The Starky borrows pieces from PLONK and the Plonky borrows pieces from STARK.
The pieces Plonky borrows from STARK make it transparent, which might induce some people
to consider it a STARK, but the pieces Starky borrows from PLONK do not make it more suc-
cinct. Because the difference between SNARK and STARK is tenuous but might interest most read-
ers, Section 3.1 explains modern SNARKs and STARKs design, and what differs them in practice.
Section 3.2 explains the differences between PLONK, STARK and their Plonky2 counterparts.

3.1 Overview

To prove an algorithm, general-purpose cryptographic proof systems (as STARK, PLONK and Groth16)
require a public input that expresses that algorithm as a finite automaton. Early SNARKs[23, 12] rep-
resented algorithms as Quadratic Arithmetic Programs (QAP), meaning steps of the algorithm
should be input to the proof as a system of constraints where each constraint represents a product of
two linear combinations that result in a third linear combination, as in Equation 1.

(
∑

i ai · xi) × (
∑

i bi · xi) =
∑

i ci · xi (1)

(A · x) × (B · x) = C · x (2)

The intuition behind QAP is that linear combinations can be obtained by multiplying a matrix and
a vector, allowing Equation 1 to be compiled into Equation 2, where A, B and C are public matrices
representing the coefficients to those linear combinations, and x is a secret vector representing variables
that satisfy them. As an example, take the Bhaskara formula stated as the left-hand side of Equation 3.
An algorithm to verify the variables involved in these formulae can be expressed in a QAP as the right-
hand side of Equation 3, and then compiled into a matrix equation as in Equation 4.


x1 =

−b+
√
b2 − 4ac

2a

x2 =
−b−

√
b2 − 4ac

2a

⇒



b · b = b2

a · c = ac√
δ ·

√
δ = b2 − 4ac

2a · x1 =−b+
√
δ

2a · x2 =−b−
√
δ

(3)


0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
2 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0





a
b
c
b2

ac√
δ

x1

x2


×


0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1





a
b
c
b2

ac√
δ

x1

x2


?
=


0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 −4 0 0 0
0 −1 0 0 0 1 0 0
0 −1 0 0 0 −1 0 0





a
b
c
b2

ac√
δ

x1

x2


(4)

Once the Prover computes x, it encodes this secret vector in a way the Verifier can check it using
equally encoded A, B and C (which can be given as public input to Prover and Verifier). In general,
this encoding process is polynomial-based and the verification process requires the validation of some
polynomial property. Polynomials are a good way to model this type of constraints because they are
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natively compatible with algebraic relationships and allow their succinct verification, even for solutions
that should not be disclosed, making them also highly compatible with Zero-Knowledge systems.

On the other hand, modern STARKs usually model constraints directly as polynomials and go
one step further by also modeling their solutions as polynomials, namely constraint polynomials
and witness polynomials. Constraint polynomials can be abstracted as CPU or circuit operations,
meaning they are defined over all internal variables used by the proof or only those required to vali-
date that algorithmic step. Circuit-like representations are more concise and easier to combine, but
combining them requires special selector polynomials that determine which constraints should be used
in each transition. CPU-like representations, on the other hand, can compress the same logic into a
single polynomial, making them more verbose and adequate for zkVM proving (see Section 4).

One advantage of polynomial over vector witness representation is that it allows variables to be
reused (their values can change in different stages of the proof), whereas vectors require a new variable
for each new value. Under this model, Equation 3 can be rewritten as the mid-part and evaluated as
the right-part of Equation 5 (polynomial properties are usually checked as evaluations to 0).

x1 =
−b+

√
b2 − 4ac

2a

x2 =
−b−

√
b2 − 4ac

2a

⇒


(
√
δ)2 = b2 − 4ac

2a · x1 =−b+
√
δ

2a · x2 =−b−
√
δ

⇒


(
√
δ)2 − b2 + 4ac= 0

2a · x1 + b−
√
δ = 0

2a · x2 + b+
√
δ = 0

(5)

In comparison to SNARKs, STARKs produce more compact constraints, smaller witness and larger
proofs. Proof size complexity depends on the proof system, but one reason for smaller SNARK proofs
is the use of outsourced randomness to ensure correctness (completeness and soundness) through the
CRS. This approach allows witness objects to be produced in linear time using field elements sampled
at random by the Generator and attached to the CRS. As a side effect, correctness depend on a trusted
third-party or a secure multi-party computation faithfully running the Generator function.

Algebraically, the CRS usually contains elements from two different groups G1 and G2 over the
same elliptic curve for which there exists a pairing function to another group of the same curve GT

(see Equation 6). The interesting thing about pairing functions is that they are probably hard to invert
due to well-studied elliptic-curve properties, i.e. given elements g1 ∈ G1 and gT ∈ GT , it is unfeasible
to find the element g2 from G2 such that e(g1, g2) = gT . Combined with other algebraic properties of
pairing functions, this feature makes them perfect for succinct proving: the Prover can use elements
contained in the CRS to produce evaluations of any polynomial on some unknown element fixed by
the Generator. With these secret GT -evaluations, and some auxiliary G1 or G2-evaluations disclosed
by the Prover, the Verifier can use the CRS to check polynomial properties hold as expected.

e : G1 ×G2 → GT (6)

The correctness of STARKs, on the other hand, depends on protocols called Probabilistic Check-
able Proofs (PCP). These protocols allow cheating Provers to succeed with some probability and, for
this reason, need to be repeated to ensure the same security as SNARKs (the more PCPs are repeated,
the less likely it is that a cheating Prover will succeed on all repetitions). Furthermore, PCPs present
an interesting trade-off: their proving time increase polynomially on the size N of the input to the
algorithm being proven, but their verification time decrease exponentially on N . This property reduces
succinctness (on the Prover side) but increases scalability, which is the main goal of STARKs.

The PCP variations used in STARKs design employ cryptographic commitment schemes to
prevent the Prover from cheating and, for this reason, they are called Interactive Oracle Proofs
(IOP). These schemes produce commitment strings that are computationally tied to input strings and,
with the help of the Prover, can be used by the Verifier to check input strings have not been altered.
The cryptographic properties of these schemes can convince the Verifier that some property holds
with high probability. In the case of IOPs, commitment strings are used by the Verifier as oracles.
A clever combination of arithmetization and IOPs can reduce the verification time from linear to
poly-logarithmic on the size of the program, helping the resulting proof to become succinct.

Table 12 compares the original SNARK protocol[23], Groth16[12] and PLONK[4], to the original
STARK protocol[8] using the concepts introduced in this section. Section 3.2 explains the differences
between PLONK[4], STARK[8], and their counterparts implemented by Plonky2.
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Feature Gennaro12[23] Groth16[12] PLONK[4] STARK[8]

Arithmetization QAP Polynomial-based
Transparent No No No Yes
Succinct Yes Yes Yes No
Scalable No No No Yes

Table 12: A comparison of STARK, PLONK, Groth16 and SNARK

3.2 Plonky2

Plonky2 implements variations of vanilla STARK and vanilla PLONK. In Starky, the correspondence
between constraint and witness polynomials is evaluated globally as in vanilla PLONK, instead of
locally as in vanilla STARK. Technically, this means polynomials representing this correspondence
are defined in a way to evaluate to zero over the entire witness domain, instead of only where their
respective constraints should hold. This is done using Lagrange polynomials as selector constraints.
As a side-effect, Starky constraints become a mix of CPU and circuit representations, meaning one
verbose constraint (receiving the entire current and next states as input) is selected per transition.

In Plonky, these correspondence polynomials are committed using DEEP-FRI[9] instead of KZG[2],
the original commitment scheme used in vanilla PLONK, which removes the need for a CRS and
makes Plonky transparent. As a side-effect, Plonky polynomials must be extended to a larger do-
main as required by DEEP-FRI. The rest of the polynomial evaluations are still required because the
arithmetization process is maintained. Table 13 compares STARK, PLONK, Starky and Plonky.

Feature STARK[8]
Plonky2[20]

PLONK[4]
Starky Plonky

Constraint representation CPU-like Mixed Circuit-like
Quotient representation Local zeros Global zeros (Lagrange-based)
Polynomial commitments FRI KZG
Commitment domain LDE of G G

Quotient testing
FRI DEEP-FRI

Zero-test
Witness testing Permutation-check

Low-Degree testing DEEP-FRI -

Table 13: A comparison of STARK, PLONK, Starky and Plonky

An important detail about Plonky2 is the choice of Goldilocks as the base field for polynomial
representation. This field is fully compatible with 32-bit architectures but requires some algebraic tricks
to represent larger values. There are no native 64-bit operations in the MIPS version implemented
by zkMIPS, but a similar trick is required to represent 32-bit GPRs as pairs of 16-bit columns. Even
though 16-bit columns increase the space necessary to represent GPRs, it results in smaller proofs.
This trade-off and other details about zkMIPS architecture will be explained in Section 4.
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4 High-level design of zkMIPS protocol

The first step to prove the correct execution of a MIPS program inside zkMIPS is to collect every
internal CPU state during the program execution. This can be done on the Prover side by running
the program and logging into a table the value of each CPU variable after each instruction execution.
This table is a preliminary version of the trace record and contains the columns described in Table 2.
This preliminary trace allows the direct verification of state transitions during program execution by
checking whether each pair of subsequent rows matches the MIPS CPU state transition function.

The exact transition function implied by each instruction is defined according to the MIPS speci-
fications (see Tables 4 to 10) and the way it is proved in a zkVM depends on the chosen proof model.
In order to simplify the design of zkMIPS proving procedure and increase its efficiency, we decided to
divide it in three dependent layers illustrated in Figure 2 and described below.

First layer: Continuation In this first layer the program execution is divided into small sequential
executions called segments. Each segment is proved independently in the second proving layer.
We call the trace from to this layer the program trace to distinguish from traces from other layers.
It is important to stress that the program trace is not explicitly logged in practice; instead, the
MIPS VM running on the first layer only logs the first and the last CPU states from each segment.
When all proofs from the second layer have been produced, they are recursively combined into one
single proof for the correct execution of the entire program trace. This process is called continuation
and, for this reason, the proofs recursively produced in this layer are called continuation proofs.

Second layer: Segmentation In this intermediary layer each segment execution is divided into
smaller, non-sequential, executions called modules, named in a reference to CPU modules responsible
for special instructions processing. Each module combines all segment instructions from an independent
subset of MIPS instructions and is proved independently in the third proving layer. Namely, the main
proving modules are arithmetic, logic, memory and control, and the instructions proved by them
are described in Table 14. In addition to these, a special Poseidon hashing module is simulated
through modules optimized for this operation, namely the Poseidon and Poseidon-Sponge modules.
We call the traces from to this layer segment traces to distinguish from traces from other layers.
Unlike the program trace, segment traces must be logged. When all proofs from the third layer have
been produced, a lookup scheme is used to prove their traces match the segment trace. At the end,
this lookup proof and third layer proofs are combined into one single proof called the segment proof.

Third layer: Modularization In this final layer each module execution is proved independently
using specialized STARK proofs. Traces proved in the third layer are called module traces and
they do not contain repeated instructions, as might be the case for segment traces. This layer is
where transition functions are finally proved, resulting in independent proofs called module proofs.
We consider instructions repeated if they execute the same MIPS instruction with the same input
values in the same order, but with possibly different input registers (only the values stored in these
registers must be the same). This property can slightly prevent redundancy and improve performance.

It should be clear that continuation proofs cannot be produced in the first layer before segment
proofs have been produced in the second layer because continuation proofs depend on segment proofs.
On the other hand, segment proofs can in theory be produced in the second layer before module proofs
have been produced because segment proofs are simply lookup proofs from segment to module traces
(both types of traces are produced in the second layer). However, second and third layers usually run
in sequence because there is little advantage in running them in parallel for practical segment sizes.

Parallelization can additionally be applied between different instances of the second layer. For large
programs, many segment provers can work together in parallel to generate segment proofs faster, re-
sulting huge performance gains in the second layer as all provers run roughly in the time of a single one.
In this setup continuation provers can also run in parallel, making the continuation layer finish in time
logarithmic to the number of segments (continuation provers depend on segment or other continuation
proofs, as can be seen in Figure 1). This distributed proving system is known as Provers network.

The main and additional proving layers described in Figure 1 are the same described in Figure 2.
The main proving layers and how their proofs are composed will be explained in Sections 4.1 to 4.3,
while the additional layer and the choice of the proof system it uses will be described in Section 4.4.
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# Name Type

1 ADD arithmetic
2 ADDI arithmetic
3 ADDIU arithmetic
4 ADDU arithmetic
7 DIV arithmetic
8 DIVU arithmetic
9 MUL arithmetic
10 MULT arithmetic
11 MULTU arithmetic
12 SLT arithmetic
13 SLTI arithmetic
14 SLTIU arithmetic
15 SLTU arithmetic
16 SUB arithmetic
17 SUBU arithmetic
49 LUI logic
58 MFHI move
59 MFLO move
62 MTHI move
63 MTLO move
64 SLL shift
65 SLLV shift
66 SRA shift
67 SRAV shift
68 SRL shift
69 SRLV shift

(a) Arithmetic module

# Name Type

5 CLO arithmetic
6 CLZ arithmetic
46 AND logic
47 ANDI logic
48 EXT logic
50 NOR logic
51 OR logic
52 ORI logic
53 SEB logic
54 SEH logic
55 WSBH logic
56 XOR logic
57 XORI logic

(b) Logic module

# Name Type

29 LB load/store and memory
30 LBU load/store and memory
31 LH load/store and memory
32 LHU load/store and memory
33 LL load/store and memory
34 LW load/store and memory
35 LWL load/store and memory
36 LWR load/store and memory
37 PREF load/store and memory
38 RDHWR load/store and memory
39 SB load/store and memory
40 SC load/store and memory
41 SDC1 load/store and memory
42 SH load/store and memory
43 SW load/store and memory
44 SWL load/store and memory
45 SWR load/store and memory
60 MOVN move
63 MOVZ move

(c) Memory module

# Name Type

18 BAL branch and jump
19 BEQ branch and jump
20 BGEZ branch and jump
21 BGTZ branch and jump
22 BLEZ branch and jump
23 BLTZ branch and jump
24 BNE branch and jump
25 J branch and jump
26 JAL branch and jump
27 JALR branch and jump
28 JR branch and jump
70 TEQ trap
71 SYSCALL trap

(d) Control module

Table 14: Opcodes implemented by each proving module
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4.1 Continuation proofs

The first proving layer in zkMIPS proves that segments are consistent with each other. This layer runs
in two steps that are invoked separately by the entity proving the program. First, zkMIPS is invoked
to run the input program and divide its execution into segments, which happens independently of the
main proving procedure. When all segment proofs have been generated, this layer is invoked again to
combine them into a single proof that shows the correctness of the entire program execution.

The program division procedure periodically pauses the VM running the MIPS program after a
constant number of instructions (the size of segments, which is received as input by zkMIPS) and
stores the memory state, the PC and the cycle counter for that moment. This set of variables is called
the image id and it is given as public input to the segment prover as it tells exactly where and how
to start the proving procedure. A compressed version of the image id is given as public input to the
segment prover. This compression replaces the memory state with a Merkle tree of the memory state,
which is enough for the Verifier to check memory access made by the Prover using Merkle paths.

When the continuation prover is invoked, image ids are used to show subsequent segments match,
by comparing the initial image id of each segment with the last image id of the previous segment.
Once the proof for the correspondence of a pair of subsequent segments is ready, their underlying
polynomials and FRI proofs are batched together (segment proofs are Starky) and attached to their
correspondent proof, resulting in a proof for the execution of the larger segment trace.

This procedure is repeated recursively until a single proof for the entire program trace is obtained.
This is possible because the continuation is the same for segments of any size, independent of whether
they were produced by segment or continuation provers. Because continuation proofs are mostly FRI
proofs, whose verification steps are also recursive, a verifier circuit for these proofs is relatively simple.
The continuation prover is written using Plonky instead of Starky, which reduces proof size, proving
time and verification complexity. The fact that Plonky and Starky use the same field and have their
polynomials low-degree tested by the same protocol makes them fully compatible and composable.

4.2 Segment proofs

The second proving layer is where the most expressive parts of zkMIPS proofs are generated. Given
memory state, PC and cycle counter from the beginning of a segment, this prover executes the program
from that point and collect memory hashes from each instruction of that segment. The image id from
the last instruction is the output of that proof and should be equal to the input of the next proof.

Segment and module traces are divided into columns containing 16-bit values. Because proofs
are written using Plonky2, 16-bit values are represented by Goldilocks elements, which are 64-bit.
A lookup verifies that values stored inside these columns are within a 16-bit range. This lookup uses a
special range counter column containing all values allowed. The reason for this 64-bit representation
of 16-bit values comes from a trade-off: 16-bit values imply 216 elements in the range counter column
and a segment size at least this large; 32-bit values would make the segment size greater than 232.
Empirically, segment sizes between 218 and 223 (which are compatible to 16-bit range checks but not
with 32-bit range checks) result in the better performance than smaller or larger segment sizes.

Since MIPS is a 32-bit architecture, the values stored in GPRs take up two columns each.
However, segment and module trace columns do not contain values from all GPRs in every cycle.
Instead of logging GPRs directly into the main trace, the segment prover logs them into a register
file in the format of Table 2, and then converts these values to a trace in the format of Table 15.

Including all registers in the main trace requires copy constraints to ensure values do not change
when they do not have to (when a register is not touched during the execution of an instruction).
Logging 32 register values of 32-bit each into 16-bit trace columns would require 64 columns for these
values, and 32 columns for variables selecting their copy constraints. Currently, zkMIPS trace record
has 57 columns, meaning GPR inclusion would increase trace size by more than 150%.

Each state of the register file where GPRs are logged to must be written to zkMIPS memory.
This means memory needs to be accessed after each instruction and register consistency is guaranteed
by memory and Poseidon modules (memory accesses require Poseidon-based Merkle paths) instead of
the segment proof. This approach might seem costly at first, but it completely removes the need for
copy constraints because the register file can be succinctly modified by constraint polynomials that
change specific memory positions, e.g. those memory words storing individual GPRs.
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Group General operations Auxiliary columns 32-bit multiplication and division

1

OPCODE
COLS

IS ADD
2 IS ADDU
3 IS ADDI
4 IS ADDIU
5 IS SUB
6 IS SUBU
7 IS MULT
8 IS MULTU
9 IS MUL
10 IS DIV
11 IS DIVU
12 IS SLLV
13 IS SRLV
14 IS SRAV
15 IS SLL
16 IS SRL
17 IS SRA
18 IS SLT
19 IS SLTU
20 IS SLTI
21 IS SLTIU
22 IS LUI
23 IS MFHI
24 IS MTHI
25 IS MFLO
26 IS MTLO

27

SHARED
COLS

INPUT REG 0 AUX REG 0
MOD OUT
AUX RED

MOD
INPUT 028

29
INPUT REG 1

AUX REG 1

MOD MOD IS ZERO MOD
INPUT 130

MOD AUX
INPUT LO

31
INPUT REG 2

MOD
MODULUS32

33
OUTPUT REG

AUX REG 2
MOD AUX
INPUT HI

MOD
OUTPUT

OUTPUT
REG LO34

35 AUX INPUT
REG 0 AUX INPUT

REG DBL

MUL AUX
INPUT LO MOD QUO

INPUT

OUTPUT
REG HI36 MOD DIV DENOM IS ZERO

37 AUX INPUT
REG 1

MUL AUX
INPUT HI MULT

AUX LO
38
39

AUX INPUT REG 2
40
41

MULT
AUX HI

42
43
44
45
46

47

EXTRA
COLS

RANGE COUNTER
48 RC FREQUENCIES
49

AUX EXTRA

50
51
52
53
54
55
56
57 NUM ARITH COLUMNS

Table 15: Trace columns
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These 57 trace columns are divided into three main groups described below:

• Opcode columns (1 to 26) define which arithmetic operation should be proven in a given row.

• Shared columns (27 to 46) contain columns used by module proofs. The most important
columns from this group are input and output register columns (27 to 34) which, as the name
suggests, receive the values input to and output by instructions. The role of each shared column
changes depending on the instruction, and sometimes zkMIPS uses macros to refer to these roles
easily. Table 15 shows these macros and to which shared columns they refer to.

• Extra columns (47 to 57) include columns used to verify other columns are well-formatted.
The most important columns from this group are the range counter column (47) and the frequency
counter column (48), which count how many times the range counter value from the same row
appears in other columns, i.e. the multiplicity vector from the range counter lookup.

Once the segment and module traces have been generated, which happens in parallel as they encode
the same rows, they are compiled into segment and module trace polynomials. In parallel to module
proving, the segment prover can compile segment and module columns to LogUp polynomials.

4.3 Module proofs

The third proving layer is where the most meaningful parts of zkMIPS proofs are processed. This layer
ensures the correctness of polynomials defined in segment proofs. In practice, there is no distinction
between these proving layers; the distinction made in this document is conceptual and tries to abstract
what is proved by pure Starky (third layer) from what is proved by lookup proofs (second layer).

Witness polynomials for segment and module proofs can be generated and processed in parallel
because they are technically the same. Segment and module columns evaluate to the same values in the
same order, with segment columns being defined sequentially and module columns non-sequentially; in
other words, the set of values in segment columns equals the union of set of values in module columns.
On the other hand, constraint polynomials for segment and module proofs are substantially different
since segment proofs represent lookups.

After segment and module witness generation, module proofs are generated by their respective
module provers, while segment proofs are generated by the LogUp prover. At this point, the order in
which these proof are generated is irrelevant Once all of these proofs have been generated, they are
batched into a final segment proof. The actual segment proof is, therefore, a combination of individual
module proofs and the LogUp proof proving their correspondence to the segment trace.

4.4 On-chain proofs

The optional proving layer compiles the final hash-based continuation proof into an elliptic-curve-based
Groth16 proof. The verification of this proof requires a pairing function that is natively supported
by the EVM. This improves on-chain verification performance because the hash function used in FRI
verification do not have to be simulated on-chain. Instead, only a succinct verification of this hash
function is performed by means of a Groth16 proof for the hash function verification algorithm.

Given a hash of the initial memory state of a program, the final continuation proof guarantees there
exists a sequence of valid CPU states that halts a MIPS VM at a valid result starting from the first
instruction of that program. By design, this property ensures logic, memory and register integrity.
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5 Performance

A lot of efficient zkVMs have appeared over the last months[22, 29, 27], changing the scenario and
the perspective for applications based on this technology. These zkVMs can be categorized depending
on their native EVM-compatible[30]. zkMIPS sits in the furthest EVM-compatible category, meaning
it proves real-world programs instead of smart contracts. Still, zkMIPS proofs can be verified on-
chain and can verify Ethereum (or any other blockchain) statements through real-world programs that
witness these statements given proper EVM data such as smart-contract data, block hashes, account
address, etc.

EVM-compatibility can be achieved through native Golang and Rust support, allowing EVM sim-
ulators written in those languages to be proven once they are compiled to MIPS. The prioritization
of support for these languages stems from the prevalence of these languages within blockchain devel-
opment. Golang and Rust support is ensured by a careful selection of MIPS instructions that include
opcodes used by these languages default compilers, go[10] and rustc[24]. Using minigeth[18] (a Golang-
based EVM verifier), zkMIPS can prove Ethereum transactions in 30 minutes on a 128-CPU server;
the same task can be performed in less than one minute using REVM[5] (a Rust-based EVM verifier).

This 30x performance improvement from Golang to Rust-based verification is due to technical dif-
ferences between these languages and their compilers, which results in significantly fewer instructions
in a rustc-compiled program that executes the same functionality as the go-compiled one. This per-
formance can be improved further for blocks with many transactions if a Prover network is used to
generate segment proofs. When using a Prover network, one must also consider the cost of aggregating
segment proofs, which takes 0.9 seconds on a 128-CPU server, and 0.6 seconds on a 64-core GPU.

If the proof must be verified on-chain, an additional Groth16 proof should be produced, which
takes around 1.7 seconds on CPU machines and 0.8 seconds on GPU machines, and produces proofs of
414KB. As for the RAM consumption, zkMIPS requires at least 17GB when proving segments of size
214, and this number goes up to 27GB for segments of size 218, allowing Provers to run on desktops.
In general, for a single Prover running on a 128-CPU server, zkMIPS achieves ∼8kHz (8k proved
instructions per second); on a 64-core GPU, this performance increases to ∼13kHz.
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