
zkMIPS: a high-level specification

ZKM Research Team

Version 0.95

Abstract

In September of 2023, ZKM Research started developing a zkVM for the MIPS instruction set
and processor architecture. This paper presents a high-level description of the system and software
architecture, including the rationale for the most important design decisions. zkMIPS code is
available in https://github.com/zkMIPS/zkm. Readers can give us feedback on this paper in
https://discord.com/channels/1125877344972849232/1246097911239016509 and ask questions
in https://discord.com/channels/1125877344972849232/1246864756250251346.

1 Introduction

A zkVM is a primitive which permits one party A to outsource a computation to another (computa-
tionally more powerful) party B in a verifiable manner. The output computed by B comes with a proof
(or seal) that the result was computed correctly. In the case of zkMIPS, the program to be executed
is specified using the MIPS instruction set, possibly after compilation from some other language.

A valid computation can be interpreted as a table whose columns represent the list of CPU variables
defining the processor’s overall state, and whose rows represent each step of the computation process.
This table is known as the trace record, or simply as the trace. Moving from one trace row to the
next represents a state transition, which must correspond to a valid computation step. In this setup,
verifying the correctness of a computation is equivalent to verifying the transition between each pair
of subsequent trace rows. One way to make this verification more efficient for A is to encode the entire
trace as a mathematical object, usually a polynomial, in a process called arithmetization.

Another important building block for zkVMs is the routine run between A and B to help the
verification of the desired polynomial properties. The polynomial resulting from the arithmetization
process is usually of the size (degree) of the program being proved, meaning verifying this polynomial
naively is roughly the same complexity of verifying the program itself. To optimize this process, the
parties involved engage in an Interactive Oracle Proof (IOP) where B sends some commitment data
to A and A queries values that facilitate the verification. Using the data provided by B beforehand,
these queried values can be verified to convince A that B did not cheat along the way.

Combining arithmetization and IOP can reduce the verification time from linear to poly-logarithmic
on the size of the program, in which case we say the resulting proof is succinct. We stress that the
zk in zkVM means Zero-Knowledge but often refers to succinctness, not to privacy. In other words,
a zkVM might not be private and still be considered a zkVM because it produces succinct proofs.

The range of IOPs used for succinct verification is somewhat small. On the other hand, the range
of arithmetization techniques is large and choosing among them is not easy. In the first place, the
underlying mathematical theory is highly abstract, not easy to comprehend, and often there is no
consensus terminology among works in the area. This is aggravated by the fact that what is described
in a paper is not necessarily what has been implemented, while these digressions often are not well
documented. One either has access to high-level theoretical papers or low-level access to existing
open-source libraries that contain very little documentation on an intermediate level. Of course,
these low-level libraries are highly relevant in order to reduce development time while obtaining good
performance.

The main purpose of this paper is to describe this confusing landscape in detail, and discuss the
choices made by ZKM. This document covers the theoretical aspects of the arithmetization models
and IOPs used in zkMIPS, as well as the design choices made during the development process. Where
theory and practice do not align, we opted to privilege the way the protocol is implemented and often

1

https://github.com/zkMIPS/zkm
https://discord.com/channels/1125877344972849232/1246097911239016509
https://discord.com/channels/1125877344972849232/1246864756250251346

ignore details that are better explained in the original papers. In other words, this document aims to
enlighten developers by plugging the gap between papers and code, though it may not be satisfactory
for hardcore mathematicians. We provide this kind of information as guidance and we believe that it
will be intrinsically useful for the community, independent of zkMIPS.

Comparison to other works

The past 2-3 years have seen the rise of numerous projects with similar objectives. zkEVMs are trying
to implement verifiable computing for Ethereum’s EVM bytecode, while Risc0, Jolt, and SP1 target
the development of a zkVM for the RISC-V instruction set. We chose MIPS for a variety of reasons.
MIPS has been around for almost 4 decades, and has a strong presence in industry with many legacy
applications. As a result, anything compiles to MIPS and MIPS compiles to anything. MIPS is also
extensively used in IoT devices. In addition, the MIPS-R3000 instruction set has not changed over time
so is very stable, unlike EVM bytecode (frequent minor opcode changes) or RISC-V (allows custom
instructions). And finally, patent concerns do not apply in the setting in which we use MIPS.

Structure of the paper

Section 2 describes the MIPS architecture, which includes certain assumptions for the sake of simplifi-
cation. Section 3 gives a general description of arguments of knowledge, discussing STARK, PLONK
and Plonky2 in particular. In Section 4, the content of the previous two sections come together,
resulting in an explanation of the zkMIPS protocol.

2 MIPS architecture

The Microprocessor without Interlocked Pipelined Stages (MIPS) is a well-known and widely adopted
class of 32/64-bit computer architectures developed by MIPS Computer Systems. The 32-bit specifi-
cation is a big-endian, register-based architecture with 32 General Purpose Registers (GPRs) of 32-bit,
allocated according to Table 1, and a 4GB memory addressed by 232 words of 4 bytes each.

Variable Name Description Size

R0 Zero Always contains 0 u32
R1 AT Assembler temporary u32

R2..R3 V0..V1 Return values u32
R4..R7 A0..A3 Parameters values u32
R8..R15 T0..T7 Temporary values u32
R16..R23 S0..S7 Saved values u32
R24..R25 T8..T9 Temporary values u32
R26..R27 K0..K1 Reserved for kernel u32

R28 GP Global pointer u32
R29 SP Stack pointer u32
R30 S8 Saved values u32
R31 RA Return address u32

Table 1: General Purpose Registers

In general, MIPS programs operate on a 32-bit cycle counter, a 32-bit program counter representing
the memory address of the current instruction (optionally, one can include a next value for this counter),
32-bit high and low results for 32-bit multiplication and division operations, an exit boolean, and an
8-bit exit flag.

In the specific case of zkMIPS, it also contains a 32-bit succinct representation of the memory state
defined as the Keccak-based Merkle root whose leaves correspond to 4KB memory pages. An extensive
description of the variables contained in a zkMIPS CPU state is given in Table 2. This memory state
representation is necessary because the memory corresponds to the program file itself: instead of
loading the program into memory, zkMIPS loads memory into a special region of the program file.
Furthermore, all variables included in intermediary states of the zkMIPS VM (i.e. counters, high/low

2

results, and exit variables) are recorded in memory after each cycle. This approach allows steps of the
execution of this VM to be described more easily since the input (program) and output (valid final
CPU state) for the proof generation are seen as states of the same object.

Variable Name Description Size

Cycle Cycle counter Counts how many instructions have been processed u32
PC Program counter Points to the address of the current instruction u32

NextPC Next Program counter
Points 8 bytes past the address of the current

instruction address
u32

HI High
Multiplication/division results

u32
LO Low u32

Exited Exit flag Indicates program finalization bool
ExitCode Exit code Indicates program finalization status u8

R0 Zero Always contains 0 u32
.
R31 RA Return address u32

MemRoot Memory state root Merkle tree of current memory state u8[32]

Table 2: CPU state

In the remainder of this section we describe how a file containing a MIPS program is organized
(Section 2.1) and which instructions are supported by the MIPS CPU (Section 2.2). As just explained,
the concepts of program and memory are blurred in the context of zkMIPS proof generation since the
program file is used to represent the memory. Therefore, to explain how zkMIPS memory is organized
and how it is used as the memory, we focus on the zkMIPS specification of a MIPS program file.

2.1 Program

Name Description Points to

ELF header Program specification
Program header
Section header

Program header List the set of segments used at runtime
.text
.data

Section header Lists the set of program sections
.text
.data

Table 3: Program/memory files

3

2.2 Instructions

zkMIPS supports a subset of 61 MIPS instructions of 32 bits each. The first or the last 6 bits of an
instruction are used for identification. The first 6 bits of an instruction are called the opcode and, when
an instruction has opcode 000000, its last 6 bits are called funct. The values contained in the opcode
and funct fields define the syntax and the semantics of each instructions. MIPS instructions have four
possible syntax formats, namely the R, I, J and Special formats. Instructions that have functs are
usually of the R or the Special formats, and instructions that do not are of the I or the J formats.

The 20 bits between opcode and funct of R format instructions are divided intoto four 5-bit fields,
with the first two encoding input registers, the third encoding an output register, and the last encoding
an extra input for some instructions. The last 26 bits of I format instructions are divided intoto two
5-bit fields encoding two inputs or one input and one output registers, and one 16-bit field encoding a
half-word input. The last 26 bits of J format instructions encode one single input. There is also one
special format for instructions that invoke system events, this one with the last 6 bits encoding a funct
field and the middle 20 bits encoding one single input. This scheme is illustrated in Table 4.

Type
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
[31..26] [25..21] [20..16] [15..11] [10..6] [5..0]

R opcode rs rt rd shamt funct
I opcode rs rt imm(ediate)
J opcode addr(ess)

Special opcode code funct

Table 4: Syntax of MIPS instruction

The 61 MIPS instructions supported by zkMIPS belong to 7 original MIPS instruction categories,
namely arithmetic, branch and jump, load/store and memory, logic, move, shift and trap, as described
in Tables 5 to 11 and listed in Table 12. These categories are important to map how instructions will
be modeled in our zkVM, as explained in Section 4.3.

Instructions from the arithmetic category perform arithmetic operations over 32-bit values stored
in input registers (R format instructions) or signed 16-bit inputs (I format instructions). These 16-bit
inputs are extended to 32-bit inputs according to their sign; thus the sext function from Table 5
performs a signed extension. The same happens for signed 16-bit inputs from branch and jump
instructions and for some from load/store and memory instructions (see Tables 6 and 7, respectively).
Unsigned 16-bit inputs from remaining load/store and memory instructions are handled differently;
they can be simply extended with zeros, so the zext function from Table 7 performs a zero extension.

Instructions from the branch and jump category modify the PC according to signed 16-bit inputs
(I format branch instructions), unsigned 26-bit inputs (J format jump instructions) or 32-bit values
stored in registers (R format jump instructions). The signed 16-bit inputs correspond to instruction
indexes relative to the current PC, while the unsigned 26-bit inputs and 32-bit values stored in registers
correspond to absolute instruction indexes. Since memory is byte-aligned and the PC corresponds to
the address of the current instruction, these instruction indexes must be converted to the instruction
addresses. To do so, signed 16-bit instruction indexes are first shifted 2 bits to the left, then extended
and added to the current PC to address memory positions within the 217 bytes (128kB) memory range
from the current PC. Analogously, unsigned 26-bit instruction indexes are first padded with zeros to
encode byte-aligned addresses instead of word-aligned, and then appended to the first 6 bytes from
the current PC to address memory positions within the 218 bytes (256MB) memory region the current
PC points to.

Instructions from the load/store category perform memory operations based on input or output
registers, base memory positions stored in registers and 16-bit memory offsets (I format instructions).
Values loaded from memory can be signed or zero extended, depending on the opcode. The memory
position from which bytes, half-words or words are loaded is given as an unrestricted byte index,
meaning they can be loaded starting from byte indexes inside memory words. In addition to that,
left or right halves of registers can be loaded or stored while maintaining the other half unchanged,
and there are instructions to lock memory position atomically. For a better comprehension on how
load/store and memory instructions are implemented, we refer to [10].

Instructions from the logic category perform usual logic operations over 32-bit values stored in

4

Name Syntax Semantics

1 ADD 000000 rs rt rd 00000 100000 rd = rs+ rt

2 ADDI 001000 rs rt imm rt = rs+ sext(imm)
3 ADDIU 001001 rs rt imm rt = rs+ sext(imm)
4 ADDU 000000 rs rt rd 00000 100001 rd = rs+ rt

5 CLO 011100 rs rt rd 00000 100001 rd = count leading ones(rs)
6 CLZ 011100 rs rt rd 00000 100000 rd = count leading zeros(rs)
7 DIV 000000 rs rt 00000 00000 011010 (hi, lo) = rs/rt
8 DIVU 000000 rs rt 00000 00000 011011 (hi, lo) = rs/rt
9 MUL 011100 rs rt rd 00000 000010 rd = rs× rt

10 MULT 000000 rs rt 00000 00000 011000 (hi, lo) = rs× rt

11 MULTU 000000 rs rt 00000 00000 011001 (hi, lo) = rs× rt

12 SLT 000000 rs rt rd 00000 101010 rd = rs < rt

13 SLTI 001010 rs rt imm rt = rs < sext(imm)
14 SLTIU 001011 rs rt imm rt = rs < sext(imm)
15 SLTU 000000 rs rt rd 00000 101011 rd = rs < rt

16 SUB 000000 rs rt rd 00000 100010 rd = rs− rt

17 SUBU 000000 rs rt rd 00000 100011 rd = rs− rt

Table 5: Syntax and semantics of arithmetic instructions

Name Syntax Semantics

18 BEQ 000100 rs rt imm rs = rt⇒ PC = PC+ sext(imm << 2)
19 BGEZ 000001 rs 00001 imm rs ≥ 0 ⇒ PC = PC+ sext(imm << 2)
20 BGTZ 000111 rs 00000 imm rs > 0 ⇒ PC = PC+ sext(imm << 2)
21 BLEZ 000110 rs 00000 imm rs ≤ 0 ⇒ PC = PC+ sext(imm << 2)
22 BLTZ 000001 rs 00000 imm rs < 0 ⇒ PC = PC+ sext(imm << 2)
23 BNE 000101 rs rt imm rs ̸= rt⇒ PC = PC+ sext(imm << 2)
24 J 000010 addr PC = PC[31..28]||addr||00
25 JAL 000011 addr r31 = PC+ 8

PC = PC[31..28]||addr||00
26 JALR 000000 rs 00000 rd shamt 001001 rd = PC+ 8

PC = rs
27 JR 000000 rs 00000 00000 shamt 001000 PC = rs

Table 6: Syntax and semantics of branch and jump instructions

input registers (R format instructions) or 16-bit inputs (I format instructions). In addition to these
operations, the logic category also features an instruction to load 16-bit inputs (I format instructions)
to the upper-most half of a GPR. Instructions from the move category copy 32-bit values between
GPRs (R format instructions), or between general-purpose and high/low registers. Instructions from
the shift category perform arithmetic or logical shifts over GPRs, according to 5-bit values stored in
input registers or shamt fields (R format instructions). Finally, the syscall instruction from the trap
category invokes special functions according to 20-bit inputs (special format instructions). For details
we refer to [10].

5

Name Syntax Semantics

28 LB 100000 rs rt imm rt = sext(mem[rs+ imm])
29 LBU 100100 rs rt imm rt = zext(mem[rs+ imm])
30 LH 100001 rs rt imm rt = sext(mem[rs+ imm : rs+ imm+ 1])
31 LHU 100101 rs rt imm rt = zext(mem[rs+ imm : rs+ imm+ 1])
32 LL 110000 rs rt imm rt = mem[rs+ imm : rs+ imm+ 3]
33 LW 100011 rs rt imm rt = mem[rs+ imm : rs+ imm+ 3]
34 LWL 100010 rs rt imm rt[31 : 16] = mem[rs+ imm : rs+ imm+ 1]
35 LWR 100110 rs rt imm rt[15 : 0] = mem[rs+ imm− 1 : rs+ imm]
36 SB 101000 rs rt imm mem[rs+ imm] = rt[7 : 0]
37 SC 111000 rs rt imm rt = 1⇒ mem[rs+ imm : rs+ imm+ 3] = rt

rt ̸= 1⇒ rt = 0
38 SH 101001 rs rt imm mem[rs+ imm : rs+ imm+ 1] = rt[15 : 0]
39 SW 101011 rs rt imm mem[rs+ imm : rs+ imm+ 3] = rt

40 SWL 101010 rs rt imm mem[rs+ imm : rs+ imm+ 1] = rt[31 : 16]
41 SWR 101110 rs rt imm mem[rs+ imm− 1 : rs+ imm] = rt[15 : 0]

Table 7: Syntax and semantics of load/store and memory instructions

Name Syntax Semantics

42 AND 000000 rs rt rd 00000 100100 rd = rs ∧ rt
43 LUI 001111 00000 rt imm rt = imm << 16

44 NOR 000000 rs rt rd 00000 100111 rd =!(rs ∨ rt)
45 OR 000000 rs rt rd 00000 100101 rd = rs ∨ rt
46 ORI 001101 rs rt imm rt = rs ∨ zext(imm)
47 XOR 000000 rs rt rd 00000 100110 rd = rs⊕ rt

48 XORI 001110 rs rt imm rt = rs⊕ zext(imm)

Table 8: Syntax and semantics of logic instructions

Name Syntax Semantics

49 MFHI 000000 00000 00000 rd 00000 010000 rd = hi

50 MFLO 000000 00000 00000 rd 00000 010010 rd = lo

51 MOVN 000000 rs rt rd 00000 001011 rt ̸= 0⇒ rd = rs

52 MOVZ 000000 rs rt rd 00000 001010 rt = 0⇒ rd = rs

53 MTHI 000000 rs 00000 00000 00000 010001 hi = rs

54 MTLO 000000 rs 00000 00000 00000 010011 lo = rs

Table 9: Syntax and semantics of move instructions

Name Syntax Semantics

55 SLL 000000 00000 rt rd shamt 000000 rd = rt << shamt

56 SLLV 000000 rs rt rd 00000 000100 rd = rt << rs[4 : 0]
57 SRA 000000 00000 rt rd shamt 000011 rd = rt >> shamt

58 SRAV 000000 rs rt rd 00000 000111 rd = rt >> rs[4 : 0]
59 SRL 000000 00000 rt rd shamt 000010 rd = rt >> shamt

60 SRLV 000000 rs rt rd 00000 000110 rd = rt >> rs[4 : 0]

Table 10: Syntax and semantics of shift instructions

Name Syntax Semantics

61 SYSCALL 000000 code 001100 syscall

Table 11: Syntax and semantics of trap instructions

6

Name Description

1 ADD Add
2 ADDI Add Immediate Word
3 ADDIU Add Immediate Unsigned Word
4 ADDU Add Unsigned Word
5 CLO Count Leading Ones in Word
6 CLZ Count Leading Zeros in Word
7 DIV Divide Word
8 DIVU Divide Unsigned Word
9 MUL Multiply Word to GPR
10 MULT Multiply Word
11 MULTU Multiply Unsigned Word
12 SLT Set on Less Than
13 SLTU Set on Less Than Unsigned
14 SLTI Set on Less Than Immediate
15 SLTIU Set on Less Than Immediate Unsigned
16 SUB Subtract Word
17 SUBU Subtract Unsigned Word

(a) Arithmetic instructions

Name Description

18 BGEZ Branch on Greater Than
or Equal to Zero

19 BLTZ Branch on Less Than Zero
20 BEQ Branch on Equal
21 BNE Branch on Not Equal
22 BLEZ Branch on Less Than or Equal to Zero
23 BGTZ Branch on Greater Than Zero
24 JR Jump Register
25 JALR Jump and Link Register
26 J Jump
27 JAL Jump and Link

(b) Branch and jump instructions

Name Description

28 LB Load Byte
29 LBU Load Byte Unsigned
30 LH Load Halfword
31 LHU Load Halfword Unsigned
32 LL Load Linked Word
33 LW Load Word Left
34 LWL Load Word Left
35 LWR Load Word Right
36 SB Store Byte
37 SC Store Conditional Word
38 SH Store Halfword
39 SW Store Word
40 SWL Store Word Left
41 SWR Store Word Right

(c) Load/store and memory instructions

Name Description

42 AND And
43 LUI Load Upper Immediate
44 NOR Not Or
45 OR Or
46 ORI Or Immediate
47 XOR Exclusive Or
48 XORI Exclusive Or Immediate

(d) Logic instructions

Name Description

49 MFHI Move From HI Register
50 MFLO Move From LO Register
51 MOVN Move Conditional on Not Zero
52 MOVZ Move Conditional on Zero
53 MTHI Move To HI Register
54 MTLO Move To LO Register

(e) Move instructions

Name Description

55 SLL Shift Word Left Logical
56 SLLV Shift Word Left Logical Variable
57 SRA Shift Word Right Arithmetic
58 SRAV Shift Word Right Arithmetic Variable
59 SRL Shift Word Right Logical
60 SRLV Shift Word Right Logical Variable

(f) Shift instructions

Name Description

61 SYSCALL System Call

(g) Trap instructions

Table 12: Instructions categories

7

3 Arguments of Knowledge

Cryptographic proof systems can model algorithms as 2-party protocols in contexts where one of
the parties can run the underlying algorithm faster than the other. Usually, the party that can
run this algorithm more easily either has access to a more efficient computer or it possesses some
secret information; in the latter case we say the protocol is a proof-of-knowledge. In both cases,
cryptographic proofs allow this privileged party to convince the other one that the underlying algorithm
was executed correctly (when run on its efficient computer or when fed with its secret information).
For this reason, we denominate these parties the Prover and the Verifier, respectively.

These proofs should be designed to optimize the interests of both the Prover and the Verifier.
On the Prover side, this means the proof system execution succeeds with high probability when the
Prover is faithfully following the protocol, i.e. it can execute the underlying algorithm successfully
and it follows the protocol description correctly. This property is called completeness. On the Ver-
ifier side, this means the proof system execution fails with high probability when the Prover is not
faithfully engaged in the protocol, i.e. it cannot execute the underlying algorithm successfully or it
does not follow the protocol description. This property is called soundness.

Sometimes these proofs are required to run in time polynomial in the logarithm of the input
to that algorithm. In other words, as the input size N increases, Prover and Verifier times increase
polynomially on log (N). When the communication complexity of a proof is also polynomial on log (N),
we say the proof issuccinct. One additional property modern proof systems may present to enable
particular proof designs is soundness holding exclusively against polynomial-time Provers. When
a proof system presents this property, we call it an argument. When the Prover possesses some
secret information, cryptographic proofs may also keep this information secure by revealing no useful
information about the secret object besides its usefulness to compute the underlying algorithm. This
property is called Zero-Knowledge (ZK).

zkMIPS is divided into a hierarchy of proofs distributed in three mandatory layers and one optional
layer. Each of these layers utilize different succinct and ZK arguments-of-knowledge, namely:

1. Scalable and Transparent Argument-of-Knowledge[2] (STARK) is used in the layer that
generates the lowest proofs in this hierarchy;

2. Multivariate Look-ups based on Logarithmic Derivatives[9] (LogUp), implemented using
STARK, is used in the layer that generates the middle proofs in this hierarchy;

3. Permutations over Lagrange-bases for Oecumenical Non-interactive Arguments-of-
Knowledge[6] (PLONK) is used in the layer that generates the highest proofs in this hierarchy;

4. Groth16[8] is used in the optional proving layer when a zkMIPS proof must be verified on-chain;

Figure 1 illustrates how these different proof systems are used in zkMIPS proof generation.
To model algorithm executions, STARK, PLONK and Groth16 proof systems use finite automatons.

The state of such automatons is composed of a list of internal variables. In this setup, a computation is
defined by a sequence of states starting from some well-defined initial state and finishing in some valid
final state, such that each pair of subsequent states represents a valid state transition. Those proof
systems operate over a table with rows representing states and columns representing internal variables,
which is precisely the trace record mentioned in Section 1. In the context of zkMIPS, rows represent
states from the program execution and columns indirectly represent CPU variables described in Table 2
(the exact representation of these variables inside the trace record will be explained in Section 4.2).

Valid state transitions are represented as polynomials over a finite field F of prime order p. These
polynomials are called constraint polynomials. Valid states are defined in terms of polynomials
over the same field, but for soundness reasons their evaluation is restricted to an appropriate subset of
this field. These polynomials are called witness polynomials. During the proving procedure, entries
for constraint polynomials are picked from witness polynomial evaluations.

The exact representation of constraint and witness polynomials depends on each proof system.
Sections 3.2, 3.3 and 3.5 elaborate on how these polynomials are defined and how their correctness
is evaluated in the STARK, PLONK and LogUp proof systems, respectively. For didactic purposes,
the notation for constraint and witness polynomials in these sections is the same: the i-th witness
polynomial is denoted by Wi and the j-th constraint polynomial is denoted by Cj . In general, for

8

PLONK PLONK PLONK

PLONK

PLONK

PLONK

PLONK

Lowest
layer

Optional
layer

LogUp
(STARK)

LogUp
(STARK)

LogUp
(STARK)

LogUp
(STARK)

LogUp
(STARK)

LogUp
(STARK)

LogUp
(STARK)

LogUp
(STARK)

Middle
layer

Groth16

Highest
layer

STARK STARK STARK STARKSTARK STARK STARKSTARK

Figure 1: Proof systems hierarchy

9

a trace record with U rows and V columns, the numbers of constraint and witness polynomials in a
proof that verifies that trace record are O(U) and O(V), respectively.

The protocols from Sections 3.2 and 3.3 model general computations, while the LogUp proof system,
explained in Section 3.5, serves a completely different purpose, but is still a major piece in zkMIPS
architecture. Section 3.4 describes the proof system implemented by the library we chose to use in our
codebase, Plonky2[12]. This library implements a variation of STARK that borrows a few pieces from
PLONK and a variation of PLONK that borrows a few pieces from STARK. For this reason, some
simplifications are made during the description of these protocols in Sections 3.2 and 3.3 in order to
keep the text as succinct as possible, yet helpful for the understanding of the protocol Plonky2.

The following section elaborates on the algebraic definitions and properties that enable the proof
systems explained in these sections. Readers not interested in algebraic definitions can skip these
paragraphs, as they are not essential for a high-level understanding of those proof systems.

3.1 Preliminaries

Constraint and witness polynomial representations Let F∗ be the multiplicative subgroup of
F of order p− 1, and let k be the largest positive integer such that 2k | p− 1 (the security properties
from the proof systems explained in the following sections require p to be chosen such that k ≥ 20).
Also, let G be a proper subgroup of F∗ of order N = 2n such that n < k, and let g be a generator of G
chosen at random. Constraint polynomials are defined as polynomial functions F∗ → F∗, while witness
polynomials are defined as polynomial functions G → F∗. Now let w⃗i = [wi,1, . . . , wi,U] represent
the i-th trace column, meaning each wi,j represents the value of the i-th variable on the j-th state.
Then, the pre-encoded witness polynomials are defined as described in Equations 1 and 2.

wi(g
j−1) = wi,j ∀ i ∈ [1, V], j ∈ [1, U] (1)

wi(g
j−1) = 0 ∀ i ∈ [1, V], j ∈ (U,N] (2)

Low Degree Extension Let G′ be a proper subgroup of F∗ of order M = 2m such that n < m < k
(implying G ⊊ G′ ⊊ F∗), let γ be a generator of F∗ chosen at random, and let H be the coset of
G′ such that H = {γ · gj−1 | j ∈ [1,M]}. A polynomial function H → F∗ that has the same coeffi-
cient representation as a polynomial function G → F∗ is called its Low Degree Extension (LDE).
The (fully-encoded) witness polynomial Wi is the LDE of the pre-encoded witness polynomial wi,
as described in Equation 3. The coset H is called evaluation domain of this LDE, and the ratio
β = M/N = 2m−n is called its blow-up factor (this is the ratio used to pick some H for a given G).

Wi(X) = a0 + a1 ·X + · · ·+ aN−1 ·XN−1 ∀ X ∈ H such that

wi(Y) = a0 + a1 · Y + · · ·+ aN−1 · Y N−1 ∀ Y ∈ G (3)

Fast Fourier Transform The compilation of vector representation of the pre-encoded witness poly-
nomials to their coefficient representation is an instance of the Inverse Discrete Fourier Transform
(IDFT). The compilation of coefficient representation of the pre-encoded witness polynomials to the
vector representation of fully-encoded witness polynomials is an instance of the Discrete Fourier
Transform (DFT). These steps are described in Equations 4 and 5. To compute the DFT and the
IDFT, the proof systems explained in the following sections use the well-known Fast Fourier Trans-
form (FFT) algorithm, which runs in time O(N · log (N)) and dominates their proof generation time
complexity. For details about the Fast Fourier Transform, see for instance the 9th chapter of [5].

(g0, wi,1), . . . , (g
U−1, wi,U), (g

U , 0), . . . , (gN−1, 0)
IDFT−−−→ a0, a1, . . . , aN−1 (4)

a0, a1, . . . , aN−1
DFT−−→ (γ · g0, z0), . . . , (γ · gM−1, zM−1) (5)

The IDFT guarantees the coefficient representation of pre-encoded or fully-encoded witness polyno-
mials is uniquely defined by N evaluations over G or H. This means the evaluation of LDEs adds

redundancy to the representation of polynomials, resulting in a soundness factors of 1
β = N

M = |G|
|H| .

Using terminology from coding theory, each wi can be seen as a word that is encoded as (blown-up
to) a Reed Solomon code-word Wi. Since H is larger than and disjoint from G, LDEs can be used to
detect cheating: if wi differs from some polynomial in one evaluation, then Wi differs from the LDE
of that polynomial in at least 1− 1

β the evaluations, resulting in log (β) bits of soundness per round.

10

Polynomial commitments To allow the Verifier to check polynomial properties over a given do-
main, some proof systems use Merkle-trees to commit to all possible evaluations of certain polyno-
mials, as illustrated in Figure 2 for the domain [0, 7]. Given the Merkle-root, the Verifier can query
any polynomial evaluation from the Prover, which in turn provides that particular evaluation and
the Merkle-path to its respective leaf. This type of commitment must feature two properties: the
Verifier cannot compute polynomial evaluations by itself, and the Prover cannot compute different
polynomial evaluations for the same element. These properties are called hiding and binding, re-
spectively, and they can be easily achieved in practice by choosing an adequate hash function. To
improve commitment and evaluation time, a sequence of polynomials (P0, . . . , Pk) can be committed
together using their linear combinations. Formally, the coefficients from this combination should be
chosen uniformly at random, but in practice they can be defined as powers of a single random α, as
described in Equation 6. This way, the Prover can provide Merkle-paths to a particular evaluation
of the combined polynomial, along with separate evaluations of all polynomials from the underlying
linear combination, so the Verifier can check this set of polynomial evaluations match their combined
polynomial evaluation.

P (X) :=

k∑
i=1

αi−1 · Pi(X) (6)

H0,7 = Hash(H0,3,H4,7)

H0,3 = Hash(H0,1,H2,3) H4,7 = Hash(H5,5,H6,7)

H0,1 = Hash(H0,H1) H2,3 = Hash(H2,H3) H4,5 = Hash(H5,H5) H6,7 = Hash(H6,H7)

H0 = Hash(P (0))

H1 = Hash(P (1))

H2 = Hash(P (2))

H3 = Hash(P (3))

H4 = Hash(P (4))

H5 = Hash(P (5))

H6 = Hash(P (6))

H7 = Hash(P (7))

Figure 2: Polynomial commitments via Merkle-tree

11

3.2 STARK

The STARK transition function can be seen as an abstraction of CPU transition functions, meaning
its function operates over the entire state of the algorithm execution. As a side-effect, the entire
current and next state are given as input to the transition function, and witness selection is embedded
into constraint polynomials. For instance, if a transition models a multiplication operation between
witness values w8 and w7 and writes the result to the witness value w6, then the entire current and
next state of the set of witnesses are received by the constraint, but only the variables involved in the
multiplication appear in the actual polynomial (see Figure 3). As a result, constraints represent the
entire logic involved in a specific operation.

mul w8 w7 w6 add w6 w5 w4 sub w1 w2 w3 mul w3 w4 w5

w8

w7

w6

w5

w4

w1

w3

w8

w7

w6

w5

w4

w1

w3

w8

w7

w6

w5

w4

w1

w3

w2 w2 w2

w8

w7

w6

w5

w4

w1

w3

w2

w8

w7

w6

w5

w4

w1

w3

w2

Figure 3: State transition on STARK-based zkVM

In their basic formulation, these constraint polynomials are 2V -variate polynomial C1, ..., CU .
The first V variables of each Cj represent the j-th state of the algorithm and the last V variables rep-
resent the subsequent state. Then, the vectors Wj = (w1,j , . . . , wV,j) and w⃗j+1 = (w1,j+1, . . . , wV,j+1)
represent a valid state transition from the j-th to (j + 1)-th state if and only if Equation 7 holds.
Using notation for witness polynomials, the trace record is valid if and only if Equation 8 holds.

Cj (w1,j , . . . , wV,j , w1,j+1, . . . , wV,j+1) = 0 ∀ j ∈ [1, U] (7)

Cj(W1(g
j−1), . . . ,WV (g

j−1),W1(g
j), . . . ,WV (g

j)) = 0 ∀ j ∈ [1, U] (8)

The polynomial representation from Equation 7 applied to the example illustrated in Figure 3 can be
seen in Equations 9 to 12. These transitions will be valid if and only if Equation 13 holds.

Cj′ (w1,j′ , . . . , w8,j′ , w1,j′+1, . . . , wV,j′+1) = (w8,j′ · w7,j′)− w6,j′+1 (9)

Cj′+1 (w1,j′+1, . . . , w8,j′+1, w1,j′+2, . . . , wV,j′+2) = (w6,j′+1 + w5,j′+1)− w4,j′+2 (10)

Cj′+2 (w1,j′+2, . . . , w8,j′+2, w1,j′+3, . . . , wV,j′+3) = (w1,j′+2 − w2,j′+2)− w3,j′+3 (11)

Cj′+3 (w1,j′+3, . . . , w8,j′+3, w1,j′+4, . . . , wV,j′+4) = (w3,j′+3 · w4,j′+3)− w5,j′+4 (12)

Cj′(W1(g
j′−1), . . . ,W8(g

j′−1)) = Cj′+1(W1(g
j′), . . . ,W8(g

j′)) = Cj′+2(W1(g
j′+1), . . . ,W8(g

j′+1)) =

Cj′+3(W1(g
j′+2), . . . ,W8(g

j′+2)) = 0 (13)

These particular polynomial compositions can be expressed as univariate polynomials by implic-
itly encoding witness polynomials inside constraint polynomials, as described in Equation 14. The
key to this transformation is the fact that each witness polynomial appears twice in the polynomial
composition, evaluated on gj−1 and on gj , suggesting the replacement of gj−1 by X. Since these uni-
variate polynomials represent the polynomial composition from Equation 8, they are called composed
polynomials. Using composed polynomials, the trace record is valid if and only if Equation 15 holds.

Cj(X) := Cj(W1(X), . . . ,WV (X),W1(g ·X), . . . ,WV (g ·X)) ∀ j ∈ [1, U] (14)

Cj(g
j−1) = 0 ∀ j ∈ [1, U] (15)

To check whether the j-th composed polynomial evaluates to 0 on gj−1, the polynomial is divided
by the polynomial of degree 1 that evaluates to 0 on this value, as described in Equation 16. The

12

result is a rational function which is equivalent to a polynomial of degree deg (Cj) − 1 if and only
if Equation 15 holds. Since all of these rational functions are expected to be polynomials, they are
called quotient polynomials. Using quotient polynomials, the trace record is valid if and only if
Equation 17 holds.

Qj(X) :=
Cj(X)

X − gj−1
∀ j ∈ [1, U] (16)

deg (Qj) = deg (Cj)− 1 ∀ j ∈ [1, U] (17)

Witness and quotient polynomials are committed to using their linear combinations, as described
in Equations 18 and 19, which are conveniently called the combined witness polynomial and the
combined quotient polynomial.

W (X) :=
∑V

i=1 α
i−1 ·Wi(X) (18)

Q(X) :=
∑U

j=1 α
j−1 ·Qj(X) (19)

To check the polynomial nature of the combined quotient polynomial, STARK uses the FRI protocol
(see Section 3.2.1). This protocol convinces the Verifier with probability β−1 (for β the blow-up factor
from the LDE) that a rational function is close to some polynomial of low-degree 2d. This implies the
correctness of the trace record when the rational function is defined as a valid quotient polynomial
and d is defined as m (the logarithm of the witness polynomial degree).

The correctness of the trace record holds because the combined quotient function is close to some
polynomial if and only if each individual quotient function is close to some polynomial of the same de-
gree. For all quotient functions to be close to polynomials of the same degree, the respective underlying
composed polynomials must also be of the same degree. Now take dmax := maxj∈[1,U] (log (deg (Cj))),

for {Cj}j∈[1,U] the composed polynomials from Equation 14, and take Dmax = 2dmax . Then, all quotient

polynomials can be made of the same degree by padding each Cj with XDmax+1−deg(Cj) in Equation 16,
where the +1 in the exponent of X ensures that the degree of resulting quotient polynomials is a power
of 2.

Qj(X) :=
Cj(X)

X − gj−1
·XDmax−deg(Cj) (20)

The entire generation and verification of these polynomials is called Algebraic Linking IOP
(ALI) and is described in Algorithm 1.

13

Algorithm 1 Algebraic Linking IOP (ALI)

1: Prover computes the trace record from Page 8

2: Prover and Verifier computes C1, . . . , CU from Pages 8 and 12

3: Verifier chooses g
$←− G, γ

$←− F∗ such that deg (γ) = p− 1, and α
$←− F∗, and sends them to Prover

4: Prover computes w⃗1, . . . , w⃗V from Pages 8 and 10

5: Prover computes w1, . . . , wV from Equations 1 and 2

6: Prover computes W1, . . . ,WV from Equation 3

7: Prover computes C1, . . . , CU from Equation 14

8: Prover computes Q1, . . . , QU from Equation 16

9: Prover computes W and Q from Equations 18 and 19

10: Prover computes commitments to W and Q, and sends them to Verifier

11: for all k ∈ [0, ⌈logβ (ϵ)⌉] do
12: Verifier chooses tk

$←− H, and queries W (t)

13: Provers sends Merkle path to W (tk), and evaluations W (tk),W1(tk), . . . ,WV (tk)

14: if Equation 18 does not hold for W (tk),W1(tk), . . . ,WV (tk) then Verifier rejects

15: Verifier queries W (g · tk)
16: Provers sends Merkle path to W (g · tk), and evaluations W (g · tk),W1(g · tk), . . . ,WV (g · tk)
17: if Equation 18 does not hold for W (g · tk),W1(g · tk), . . . ,WV (g · tk) then Verifier rejects

18: Verifier queries Q(tk)

19: Provers sends Merkle path to Q(tk), and evaluations Q(tk), Q1(tk), . . . , QU (tk)

20: if Equation 19 does not hold for Q(tk), Q1(tk), . . . , QU (tk) then Verifier rejects

21: Verifier accepts

3.2.1 Fast Reed-Solomon IOP of Proximity (FRI)

As explained in the end of the previous section, Q is a rational function that is equivalent to a
polynomial if and only if the Prover uses suitable witness polynomials. This section describes a
protocol called Fast Reed-Solomon IOP of Proximity (FRI) [1] that verifies this property. A
single instance of the FRI protocol shows that a low-degree extended function is δ-close to a polynomial
of degree lower than or equal to some fixed power of 2, say D = 2d. This means that a fraction δ
of all possible evaluations of this function equals the evaluations of a polynomial of degree D. The
application of an LDE (see Page 10) adds a redundancy β required to the δ-closeness evaluation,
implying δ = β−1 = N/M = 2n−m.

The word fast from the protocol refers to the FFT, because the recursion step used in FRI is
inspired by the one used in the FFT. This recursion divides a function fi in even and odd functions,
namely f even

i and fodd
i , according to the degree of each of its factors. Then, it combines these functions

to generate a closely-related function fi+1 that will be used in the next recursion step. Later, the
relation between subsequent pairs of recursive functions is tested by appropriate commitment queries.
The amount of times the relation between these recursive functions are tested proves the closeness to
some polynomial of degree D. Namely, i tests imply (β−i)-closeness to such a polynomial.

FRI recursion is defined in a way to represent polynomial fi(X) as a combination of f even
i (X2) and

fodd
i (X2), where fodd

i is multiplied by X to correct the degree of its factors, as described in Equation 21
for Di := deg (fi) such that Di is even (which should hold for all iterations but the last). Since these
even and odd functions are defined from their evaluation on X2, their domain size and degree are also
half the domain size and degree of their predecessor, as described in Equation 22.

fi(X) = a0 + a1 ·X + · · ·+ aDi−1 ·XDi−1 + aDi ·XDi =: f even
i (X2) +X · fodd

i (X2) ⇒
f even
i (X) = a0 + · · ·+ aDi/2 ·X

Di/2 and fodd
i (X) = a1 + · · ·+ aDi/2−1 ·XDi/2−1 (21)

14

fi : Hi → F∗ ⇒

{
f even
i , fodd

i : Hi+1 → F∗, where
∣∣Hi+1 := {h2 | h ∈ Hi}

∣∣ = 1
2 · |Hi|

deg (f even
i) ≤ 1

2 ·Di and deg
(
fodd
i

)
≤ 1

2 ·Di − 1
th (22)

Then the Prover replaces the factor X multiplying fodd
i by some ri ∈ F∗ chosen at random by

Verifier, denotes the resulting function by fi+1, as described in Equation 23. Once f even
i , fodd

i and fi+1

are defined, the Prover commits to these polynomials and sends their commitments to the Verifier.
This is done for all i ∈ [0, d] (assuming f0 has been committed to) and it is called the commit phase.

fi+1(X) := f even
i (X) + ri · fodd

i (X) (23)

After the commit phase, the Verifier checks the relation between each i-th and (i+ 1)-th recursive
functions by querying fi(si), fi(−si) and fi+1(s

2
i), for some si ∈ F∗ chosen at random. It uses fi(si)

and fi(−si) to compute f even
i (s2i) and fodd

i (s2i), as described in Equations 24 and 25, and uses these
values to check fi+1(s

2
i), as described in Equation 26. This process is called the query phase.

f even
i (s2i) =

fi(si) + fi(−si)
2

=
f even
i (s2i) +������

si · fodd
i (s2i) + f even

i (s2i)−������
si · fodd

i (s2i)

2
(24)

fodd
i (s2i) =

fi(si)− fi(−si)
2 · si

= ����
f even
i (s2i) +ZZsi · fodd

i (s2i)−����
f even
i (s2i) +ZZsi · fodd

i (s2i)

2 ·ZZsi
(25)

fi+1(s
2
i)

?
= f even

i (s2i) + ri · fodd
i (s2i) (26)

At the end of the query phase, deg (f0) ≤ d if and only if deg (fd) = 1, i.e. fd is a linear function.
The Verifier is convinced of this fact with soundness β if fd+1 is a constant function, as described in
Equations 27 and 28. This can be easily checked if the Verifier queries more than one evaluation of
this function. For this reason and to increase the soundness guarantee, the query phase is run several
times and the fd+1 evaluations queried in each of them are compared to each other.

fd(X) = a0 + a1 ·X =: f even
d (X2) +X · fodd

d (X2) ⇒ f even
d (X) = a0 and fodd

d (X) = a1 (27)

fd+1(X) := f even
d (X) + rd · fodd

d (X) = a0 + rd · a1 (28)

This entire process is illustrated in Figure 4 and described in Algorithm 2, for the target soundness
from Section 3.2. For a rigorous analysis of FRI soundness, see [4].

Algorithm 2 Fast Reed-Solomon IOP of Proximity (FRI)

1: Prover sets f0 := f

2: Prover computes a commitment to f0 and sends it to Verifier

3: for all i ∈ [0, d] do

4: Prover computes f even
i and fodd

i from Equation 21

5: Verifier chooses ri
$←− F∗ and sends it to Prover

6: Prover computes fi+1 from Equation 23

7: Prover computes a commitment to fi+1 and sends the commitment to Verifier

8: for all k ∈ [0, ⌈logβ (ϵ)⌉] do
9: for all i ∈ [0, d] do

10: Verifier chooses sk,i
$←− H, and queries fi(sk,i), fi(−sk,i) and fi+1(s

2
k,i)

11: Verifier computes f even
i (s2k,i) and fodd

i (s2k,i) from Equations 24 and 25

12: if Equation 26 does not hold for fi+1(s
2
k,i), f

even
i (s2k,i) and fodd

i (s2k,i) then Verifier rejects

13: if k > 0 and fd+1(s
2
k,d) ̸= fd+1(s

2
k−1,d) then Verifier rejects

14: Verifier accepts

Finally, we stress that ZK properties follow partially from the hiding properties of the hash function
used to generate Merkle trees. Since Verifier queries logβ (ϵ) sets of polynomials, a negligible amount
of information is leaked if logβ (ϵ) = poly (n). Intuitively, for f : G→ F∗, consider that any deg (f)− 1

15

f0(X) = a0 + a1 ·X + a2 ·X2 + a3 ·X3 + a4 ·X4 + a5 ·X5 + a6 ·X6 + a7 ·X7 + a8 ·X8

f1(X)

f3

is it constant?f4

f even
0 (X) fodd

0 (X)

f even
0 (X2) +X · fodd

0 (X2) := f0(X) deg (f even
0) ≤ 4 and deg

(
fodd
0

)
≤ 3

f even
1 fodd

1

f even
3 fodd

3

f2(X)

f even
2 fodd

2

f even
1 (X2) +X · fodd

1 (X2) := f1(X)

f even
2 (X2) +X · fodd

2 (X2) := f2(X)

f even
3 (X2) +X · f odd

3 (X2)

f1(X) := f even
0 (X) + r0 · fodd

0 (X)

f2(X) := f even
1 (X) + r1 · fodd

1 (X)

f even
2 (X) + r2 · f odd

2 (X)

deg (f even
1) ≤ 2

deg
(
fodd
1

)
≤ 1

deg (f even
2) ≤ 1

deg
(
fodd
2

)
≤ 0

deg (f even
3) ≤ 0

deg
(
fodd
3

)
≤ 0

deg (f1) ≤ 4

deg (f2) ≤ 2

deg (f3) ≤ 1

deg (f4) ≤ 0

f even
3 (X)+

r3 · fodd
3 (X)

Figure 4: Fast Reed-Solomon IOP of Proximity (FRI)

16

evaluations of f define |G| possibilities for it. Hence, our protocol inherits hiding properties from
the Merkle tree’s hash function as long as logβ (ϵ) = poly (U) and |G| = O(2U), which holds by
construction. For a formal proof of this protocol’s ZK properties, we refer to [4].

3.2.2 Domain Extending for Eliminating Pretenders (DEEP)

A single FRI execution provides β bits of soundness to the proof and therefore, for target ϵ bits
of soundness, it must be repeated logϵ (β) times. To achieve better soundness without repetition,
polynomial degrees can be verified indirectly using an auxiliary polynomial evaluation on a value chosen
by the Verifier after they receive polynomial commitments. This value must be sampled from outside
the box that defines witness polynomials and their LDEs, which can be seen as a domain extension.
This extension helps the Verifier to catch Provers cheating during the commitment opening and, for
this reason, this method is called Domain Extending for Eliminating Pretenders (DEEP)[3].

The boxes that define witness polynomials and their LDEs are G and H, respectively, mean-

ing the Verifier must choose a value z
$←− F∗ \ (G ∪ H) and send it to the Prover. As a response,

the Prover sends back evaluations of polynomials that will be DEEP-verified, namely f1(z), . . . , fd+1(z),
f even
1 (z), . . . , f even

d (z) and fodd
1 (z), . . . , fodd

d (z). Using these evaluations, Prover and Verifier define poly-
nomials fz

1 , . . . , f
z
d+1 as in ??, respectively, and use them instead of their non-DEEP counterparts

whenever a relationship between these polynomials needs to be verified inside FRI.

f even,z
i (X) := f even

i (X)− f even
i (z) fodd,z

i (X) := fodd
i (X)− fodd

i (z) fz
i+1(X) := fi+1(X)− fi+1(z)

(29)

The choice of z ̸∈ (G∪H) after the polynomials have been committed to implies that the soundness
for FRI over their DEEP counterparts is greater than the soundness for FRI over the original polyno-
mials. The reason for this gain in soundness is the existence of a polynomial F of degree D close to a
function f if and only if there exists a polynomial F z of degree D − 1 close to fz. Since z is chosen
after the commitment to f , and the commitment scheme used is sufficiently binding (by assumption),
there is no way for the Prover to cheat during future evaluations, specially in polynomial evaluations
from FRI.

DEEP can be employed directly to ALI and FRI, in which case we call them DEEP-ALI and DEEP-
FRI, and it guarantees roughly the same soundness to both protocols. However, the soundness gain of
combining DEEP-ALI and DEEP-FRI is small and does not compensate for the increased complexity,
hence we describe only DEEP-FRI in Algorithm 3 and the STARK formulation using DEEP-ALI and
FRI in Algorithm 4.

17

Algorithm 3 Domain Extending for Eliminating Pretenders for Fast Reed-Solomon IOP of Proximity
(DEEP-FRI)

1: Prover sets f0 := f

2: Prover computes a commitment to f0 and sends it to Verifier

3: for all i ∈ [0, d] do

4: Prover computes f even
i and fodd

i from Equation 21

5: Verifier chooses ri
$←− F∗ and sends it to Prover

6: Prover computes fi+1 from Equation 23

7: Prover computes a commitment to fi+1 and sends the commitment to Verifier

8: Verifier z
$←− F∗ \ (G ∪H) and sends it to Prover

9: Prover computes f0(z) and sends it to Verifier

10: for all i ∈ [0, d] do

11: Prover computes f even
i (z), fodd

i (z) and fi+1(z), and sends them to Verifier

12: for all i ∈ [0, d] do

13: Verifier chooses si
$←− H, and queries fi(si), fi(−si) and fi+1(s

2
i)

14: Verifier computes f even
i (s2i) and fodd

i (s2i) from Equations 24 and 25

15: Verifier computes fz
i (si), f

z
i (−si), f

even,z
i (s2i), f

odd,z
i (s2i) and fz

i+1(s
2
i) from Equation 29

16: if Equation 24 does not hold for fz
i (si), f

z
i (−si) and f even,z

i (s2i) then Verifier rejects

17: if Equation 25 does not hold for fz
i (si), f

z
i (−si) and fodd,z

i (s2i) then Verifier rejects

18: if Equation 26 does not hold for fz
i+1(s

2
i), f

even,z
i (s2i) and fodd,z

i (s2k,i) then Verifier rejects

19: if fz
d+1(s

2
d) ̸= fz

d+1(s
2
d) then Verifier rejects

20: Verifier accepts

Algorithm 4 Scalable and Transparent Argument of Knowledge (STARK)

1: Prover and Verifier engage in Algorithm 1

2: Prover and Verifier engage in Algorithm 3 for f := W and f := Q

18

3.3 PLONK

PLONK transition function can be seen as an abstraction of circuit transition functions, meaning
gates are abstracted as constraints and wires are abstracted as witness polynomials. In this setup,
only the necessary subsets of the current and next states are given as input to transition functions.
For instance, consider the example from the previous section, i.e. a transition modeling w6 = w8 ·w7.
In this example, the constraints receive as input the previous state of the subset of witnesses {w8, w7}
and yield as output the next state of the subset of witnesses {w6} (see Figure 5). As a result, these
constraints represent the logic intrinsic to that specific operation, as described by the constraints from
Equations 30 to 32.

mul w3 w4 w5mul w8 w7 w6

mul w8 w7 w6 add w6 w5 w4 sub w1 w2 w3 mul w3 w4 w5

add w6 w5 w4 sub w1 w2 w3

w8

w7

w6

w5

w4

w1

w3

w8

w7

w6

w5

w4

w1

w3

w8

w7

w6

w5

w4

w1

w3

w2 w2 w2

w8

w7

w6

w5

w4

w1

w3

w2

w8

w7

w6

w5

w4

w1

w3

w2

w8

w7

w6

w4

w5

w6

w5

w4

w3

w1

w3

w2

Figure 5: State transition on PLONK-based zkVM

Cmul (Xin1, Xin2, Xout) = (Xin1 ·Xin2)−Xout (30)

Cadd (Xin1, Xin2, Xout) = (Xin1 +Xin2)−Xout (31)

Csub (Xin1, Xin2, Xout) = (Xin1 −Xin2)−Xout (32)

In their basic formulation, these constraint polynomials can model gates that connect to an arbitrary
number of wires (the number of polynomial variables is arbitrary) and that are executed in no particular
order. A structural side-effect from this weak polynomial definition is the need to ensure that the values
used as input to each constraint equal the values output by the last constraints that modified that wire.
To implement this wiring function, the proof system uses special constraints to ensure wire integrity
and input selection, and special variables to ensure correct ordering of operations.

Constraints used for wire integrity are called copy constraints, and they can ensure the integrity
of the same or different wires. When guaranteeing integrity of the same wire, copy constraints can
embed the witness polynomial corresponding to that wire into a univariate polynomial as described in
Equation 33. When guaranteeing integrity of different wires, copy constraints can embed the witness
polynomials corresponding to those wires into a univariate polynomial, as described in Equation 34.

CCi(X) = Wi(X)−Wi(g ·X) (33)

CCi,i′(X) = Wi(X)−Wi′(X) (34)

Constraints used for input selection are called selector constraints, and they are defined as a
combination of witness polynomials and special binary variables called selector variables. These vari-
ables depend only on the algorithm being proven, so they can be computed by the Verifier through

19

combinations of Lagrange polynomials and certain polynomial identities. Inputs to the gates from
Figure 5 can be selected by constraints Sin1, Sin2 and Sout described in Equations 35 to 37 using sets
of selector variables {Si,in1}i∈[1,8], {Si,in2}i∈[1,8] and {Si,out}i∈[1,8].

Sin1 (X) =
∑8

i=1 Si,in1(X) ·Wi(X) (35)

Sin2 (X) =
∑8

i=1 Si,in2(X) ·Wi(X) (36)

Sout (X) =
∑8

i=1 Si,out(X) ·Wi(g ·X) (37)

The polynomials from Equations 30 to 32 applied to the example illustrated in Figure 5 can be seen
in Equations 38 to 41. Combined with copy and selector constraints from Equations 33 to 37, their
evaluation can be expressed as in Equation 42 (composed polynomial), where variables {Si}i∈[1,8]

select copy constraints {CCi}i∈[1,8]. These transitions will be valid if and only if the polynomial
evaluations in Equations 43 to 46 hold (polynomial evaluations not listed in these equations should
equal 0).

Cmul (w8,j′ , w7,j′ , w6,j′+1) := (w8,j′ · w7,j′)− w6,j′+1 (38)

Cadd (w6,j′+1, w5,j′+1, w4,j′+2) := (w6,j′+1 + w5,j′+1)− w4,j′+2 (39)

Csub (w1,j′+2, w2,j′+2, w3,j′+3) := (w1,j′+2 − w2,j′+2)− w3,j′+3 (40)

Cmul (w3,j′+3, w4,j′+3, w5,j′+4) := (w3,j′+3 · w4,j′+3)− w5,j′+4 (41)

C(X) := Smul(X) · Cmul(Sin1(X), Sin2(X), Sout(X)) + Sadd(X) · Cadd(Sin1(X), Sin2(X), Sout(X))+

Ssub(X) · Csub(Sin1(X), Sin2(X), Sout(X)) +
∑8

i=1 Si(X) · (Wi(X)−Wi(g ·X)) = 0 (42)

Smul(g
j′−1) = 1 S8,in1(g

j′−1) = 1 S7,in2(g
j′−1) = 1 S6,out(g

j′−1) = 1 Si ̸=6(g
j′−1) = 1 (43)

Sadd(g
j′) = 1 S6,in1(g

j′) = 1 S5,in2(g
j′) = 1 S4,out(g

j′) = 1 Si̸=4(g
j′) = 1 (44)

Ssub(g
j′+1) = 1 S1,in1(g

j′+1) = 1 S2,in2(g
j′+1) = 1 S3,out(g

j′+1) = 1 Si̸=3(g
j′+1) = 1 (45)

Smul(g
j′+2) = 1 S3,in1(g

j′+2) = 1 S4,in2(g
j′+2) = 1 S5,out(g

j′+2) = 1 Si̸=5(g
j′+2) = 1 (46)

At this point, it should be clear that PLONK builds algorithmic structures by employing specialized
constraints and variables, whereas STARK builds them using highly-specific constraints to model all
the logic involved in a particular transition. An advantage of the PLONK approach is the fact that
a single simple polynomial can encode the logic from the entire program, reducing proving steps and
compiling proving logic to selectors that can easily be computed by the Verifier. STARK, on the other
hand, requires several polynomial compositions that cannot be checked efficiently by the Verifier.

In this context, the quotient polynomial is defined as the division of the final constraint poly-
nomial by a polynomial that evaluates 0 over all elements of G. This polynomial is known as the
vanishing polynomial and, because G is a multiplicative subgroup of F ∗, it can be computed as in
Equation 47, thus the quotient polynomial can be computed as in Equation 48. The algebraic identity
behind Equation 47 is the fact that the multiplicative subgroup of F ∗ with size N is unique and,
because it is multiplicative, the n-th power of each element contained in it equals 1.

Z(X) := (X − g0) · (X − g1) · · · (X − gN−1) = XN − 1 (47)

Q(X) :=
C(X)

Z(X)
=

C(X)

XN − 1
(48)

Finally, with a single query over the quotient and the final constraint polynomial, the Verifier can
check whether Equation 42 evaluates to 0 in every element of the trace domain G. This holds by design
because selector polynomials ensure only the right constraint polynomials should hold in each step of
the algorithm. In addition to the polynomial queries, Prover and Verifier may also engage in a FRI
instance to check the low-degreeness of witness polynomials. The entire generation and verification of
these polynomials is described in Algorithm 5.

20

Algorithm 5 Permutations over Lagrange-bases for Oecumenical Non-interactive Arguments-of-
Knowledge (PLONK)

1: Prover computes the trace record from Page 8

2: Prover and Verifier compute C1, . . . , CU from Pages 8 and 19

3: Verifier chooses g
$←− G, γ

$←− F∗ such that deg (γ) = p− 1, and α
$←− F∗, and sends them to Prover

4: Prover computes w⃗1, . . . , w⃗V from Pages 8 and 10

5: Prover computes w1, . . . , wV from Equations 1 and 2

6: Prover computes W1, . . . ,WV from Equation 3

7: Prover computes C from Equation 42

8: Prover and Verifier compute Z from Equation 47

9: Prover computes Q from Equation 48

10: Prover computes W from Equation 18

11: Prover computes commitments to W and Q, and sends them to Verifier

12: for all k ∈ [0, ⌈logβ (ϵ)⌉] do
13: Verifier chooses tk

$←− H, and queries W (t)

14: Provers sends Merkle path to W (tk), and evaluations W (tk),W1(tk), . . . ,WV (tk)

15: if Equation 18 does not hold for W (tk),W1(tk), . . . ,WV (tk) then Verifier rejects

16: Verifier queries W (g · tk)
17: Provers sends Merkle path to W (g · tk), and evaluations W (g · tk),W1(g · tk), . . . ,WV (g · tk)
18: if Equation 18 does not hold for W (g · tk),W1(g · tk), . . . ,WV (g · tk) then Verifier rejects

19: Verifier queries Q(tk)

20: Provers sends Merkle path to Q(tk)

21: Verifier computes C(tk) from Equation 42

22: if Equation 42 does not hold for each C(tk) and W1(tk), . . . ,WV (tk),W1(g · tk), . . . ,WV (g · tk)
then Verifier rejects

23: if Equation 16 does not hold for each Qj(tk) and W1(tk), . . . ,WV (tk),W1(g · tk), . . . ,WV (g · tk)
then Verifier rejects

24: Verifier accepts

21

3.4 Plonky2

Plonky2 implements variations of vanilla STARK and vanilla PLONK. In their implementation of
STARK, called Starky, quotient polynomials are defined in a way to evaluate to zero in all elements
from G, instead of only where the underlying composed polynomial should hold. This is done using
Lagrange polynomials as in vanilla PLONK. As a side-effect, Starky constraints mix CPU and Circuit-
based representations, meaning there are several constraints to choose from (though in practice it is
better to choose as few as possible) and each of them receives the entire current and next states as
input. In the end, Starky constraint and quotient polynomials are of the form described in Equations 49
and 50.

C(X) := S1(X) · C1(W1(X), . . . ,WV (X),W1(g ·X), . . . ,WV (g ·X))+

S2(X) · C2(W1(X), . . . ,WV (X),W1(g ·X), . . . ,WV (g ·X)) + · · ·+
SU ′(X) · CU ′(W1(X), . . . ,WV (X),W1(g ·X), . . . ,WV (g ·X)) (49)

Q(X) :=
C(X)

Xn − 1
(50)

In their implementation of PLONK, called Plonky, quotient polynomials are committed using
DEEP-FRI instead of KZG, the original commitment scheme used in vanilla PLONK. As a side-effect,
the Plonky polynomials (composed, quotient and vanishing polynomials) must now be low-degree
extended. Because the arithmetization process is the same, the zero-test which verifies that quotient
polynomials evaluate to 0 over G is still required, as well as the permutation proof which verifies that
copy constraints hold over witness polynomials. Table 13 compares vanilla STARK, Starky, vanilla
PLONKY and Plonky.

Feature STARK
Plonky2

PLONK
Starky Plonky

Constraint representation CPU-like Mixed Circuit-like
Quotient representation Local zeros Global zeros (Lagrange-based)
Polynomial commitments FRI KZG
Commitment domain LDE of G G

Quotient testing
FRI DEEP-FRI

Zero-test
Witness testing Permutation

Low-Degree testing DEEP-FRI -

Table 13: A comparison of STARK, Starky, PLONKY and Plonky.

Another important detail from Plonky2 is the algebraic field chosen to implement their proofs.
The library uses the Goldilocks field G = Fp, for p = 264 − 232 + 1, which is fully compatible with
32-bit architectures but requires a few algebraic tricks to represent 64-bit values. For instance, 296

cannot be natively represented as a Goldilocks element, but it is equivalent to −1 over G because
264 is equivalent to 232 − 1 (see Equations 51 and 52). This fact allows the Goldilocks element n′

equivalent to a 128-bit value n to be efficiently computed over this field using its 32-bit representation
(n0, n1, n2, n3), as described in Equation 53.

264 ≡ 232 − 1 (mod p) (51)

296 ≡ 264 · 232 ≡ (232 − 1) · 232 ≡ 264 − 232 ≡ 232 − 1− 232 ≡ −1 (mod p) (52)

n = n0 + 232 · n1 + 264 · n2 + 296 · n3 ⇒
n′ ≡ n0 + 232 · n1 + (232 − 1) · n2 + (−1) · n3 ≡ n0 − n2 − n3 + (n1 + n2) · 232 (mod p) (53)

There are no native 64-bit operations in the MIPS version implemented by zkMIPS, but a similar
trick is employed to represent 32-bit GPRs as pairs of 16-bit columns. Even though the choice for
16-bit columns increases the space necessary to represent GPRs, it results in smaller proofs because a
lot of internal variables cannot surpass 216. This topic will be elaborated in Section 4.

22

3.5 LogUp

Modern arguments of knowledge often use special proof systems to show the correspondence between
different vectors. These proof systems are called lookup schemes, and they prove that a given
vector v⃗ = (v0, v1, . . .) is a multi-set of a target vector t⃗ = (t0, t1, . . .), i.e. they prove that for
each i ∈ [0, |v|), there exists some j ∈ [0, |⃗t|) such that tj = vi. Given a multiplicity vector
m⃗ = [m0, . . . ,m|⃗t|], some lookup schemes can additionally show that there exist mj possible values i
such that vi = tj .

Using polynomials, tj = vi can be expressed as in Equation 54. Similarly, assuming t is a simple
set (each element appears once), tj = vi1 = · · · = vimj

can be expressed as in Equation 55. In this

setup, v⃗ is a multi-set of t⃗ if and only if Equation 56 holds. This property can be shown by letting the
Prover commit to the left-hand and right-hand sides of this equation, and running some IOP with the
Verifier to prove these polynomials are equal.

X − tj = X − vi (54)

(X − tj)
mj =

∏mj

k=1(X − vik) (55)∏|t|
j=1(X − tj)

mj =
∏|v|

i=1(X − vi) (56)

zkMIPS uses a state-of-the-art lookup scheme called LogUp[9] to prove program instructions were
correctly verified in their own special modules. LogUp proves the multi-set relationship between two
vectors using the properties stated in Equations 57 and 58 instead of the ones from Equations 55
and 56. A full specification of this protocol will be given in the final version of this paper.

mj

X + tj
=

mj∑
k=1

1

X + vik
(57)

|t|∑
j=1

mj

X + tj
=

|v|∑
i=1

1

X + vi
(58)

23

4 High-level design of the zkMIPS protocol

The first step to prove the correct execution of a MIPS program inside zkMIPS is to collect every
internal CPU state during the program execution. See Table 2. This can be done on the Prover
side by running the program and storing into a table the value assumed by each CPU variable after
each instruction. This table is a preliminary version of the trace record; it contains the columns
described in Table 2. This preliminary trace allows the direct verification of state transitions during
program execution by checking whether each pair of subsequent rows matches the MIPS CPU transition
function.

The exact transition function implied by each instruction is defined according to the MIPS speci-
fications (see Tables 5 to 11) and the way it is proved in a zkVM depends on the chosen proof model.
In order to reduce complexity and increase efficiency, we decided to divide the actual zkMIPS proving
procedure in three dependent layers illustrated in Figure 6 and described below.

First layer: proving segments are consistent Program execution is divided into small sequential
executions called segments. Each segment is proved independently in the second proving layer.
To distinguish the trace proved in the first layer from those proved in the second layer, we call
the trace proved in the first layer the program trace. It is important to stress that the program
trace is not explicitly logged in practice; instead, the MIPS VM running on the first layer only
logs the first and the last CPU states from each segment. When all proofs from the second layer
have been produced, they are recursively combined into one single proof for the correct execution
of the entire program trace. This process is called continuation and, for this reason, the proof
produced at the end of this layer is called a continuation proof.

Second layer: division in modules Each segment execution is divided into smaller, non-sequential,
executions called modules, named in a reference to CPU modules responsible for special instruc-
tions processing. Each module combines all segment instructions from an independent subset
of MIPS instructions and is proved independently in the third proving layer. Namely, the main
proving modules are arithmetic, logic, memory and control, and the instructions proved by them
are described in Table 14. Additionally, a special Keccak hashing CPU module is simulated
through modules optimized for this operation, namely the Keccak and Keccak-Sponge modules.
To distinguish traces proved in the second layer from those proved in the third layer, we call
traces proved in the second layer segment traces. Unlike the program trace, segment traces
must be logged. When all proofs from the third layer have been produced, they are combined
into one single proof (using a lookup scheme) for the correct execution of the entire segment
trace. This proof is called a segment proof.

Third layer: specialized STARK proofs each module execution is proved independently using
specialized STARK proofs. This layer is where transition functions are finally proved. Traces
proved in the third layer are calledmodule traces and they do not contain repeated instructions,
as might be the case for segment traces. We consider two instructions repeated if they have the
same MIPS instruction and same input values, with possibly different input registers (the values
in these registers when the instructions are executed must be the same). This property can
slightly reduce proving redundancy and improve performance.

It should be clear that continuation proofs cannot be produced in the first layer before segment
proofs have been produced in the second layer, because continuation proofs depend on segment proofs.
However, segment proofs can be produced in the second layer before module proofs have been produced
in the third layer, because segment proofs are simply lookup proofs from segment to module traces.
Chronologically, this means second and third layers can run in parallel.

There is a clear correspondence between the proof systems described in Figure 1 and the proving
layers described in Figure 6, except for the additional layer from the latter. The main proving layers
and how their proofs are composed will be explained in Sections 4.1 to 4.3. The additional layer and
the choice of the proof system it uses will be described in Section 4.4.

24

segments

module
polys

modular
proofs

1st layer

Run program and
generate segments

Generate continuation
polynomials

2nd layer

Run segments and
generate traces

segment
proofs

MIPS
program

zkMIPS
proof

3rd layer

Generate arithmetic proof

Generate logic proof

Generate memory proof

Generate control proof

Generate Keccak proof

Generate Keccak-Sponge

Generate segment and
module polynomials

Generate lookup polynomials

Generate lookup proofs

S
T
A
R
K

L
og
U
p

(S
T
A
R
K
)

P
L
O
N
K

Generate continuation proofs

Figure 6: Proving layers

25

Name Type

1 ADD arithmetic
2 ADDI arithmetic
3 ADDIU arithmetic
4 ADDU arithmetic
7 DIV arithmetic
8 DIVU arithmetic
9 MUL arithmetic
10 MULT arithmetic
11 MULTU arithmetic
12 SLT arithmetic
13 SLTI arithmetic
14 SLTIU arithmetic
15 SLTU arithmetic
16 SUB arithmetic
17 SUBU arithmetic
43 LUI logic
49 MFHI move
50 MFLO move
53 MTHI move
54 MTLO move
55 SLL shift
56 SLLV shift
57 SRA shift
58 SRAV shift
59 SRL shift
60 SRLV shift

(a) Arithmetic module

Name Type

5 CLO (?) arithmetic
6 CLZ (?) arithmetic
42 AND logic
44 NOR logic
45 OR logic
46 ORI logic
47 XOR logic
48 XORI logic

(b) Logic module

Name Type

28 LB load/store and memory
29 LBU load/store and memory
30 LH load/store and memory
31 LHU load/store and memory
32 LL load/store and memory
33 LW load/store and memory
34 LWL load/store and memory
35 LWR load/store and memory
36 SB load/store and memory
37 SC load/store and memory
38 SH load/store and memory
39 SW load/store and memory
40 SWL load/store and memory
41 SWR load/store and memory
51 MOVN (?) move
52 MOVZ (?) move

(c) Memory module

Name Type

18 BEQ branch and jump
19 BGEZ branch and jump
20 BGTZ branch and jump
21 BLEZ branch and jump
22 BLTZ branch and jump
23 BNE branch and jump
24 J branch and jump
25 JAL branch and jump
26 JALR branch and jump
27 JR branch and jump
61 SYSCALL trap

(d) Control module

Table 14: Opcodes implemented by each proving module

26

4.1 Continuation proofs

The first proving layer in zkMIPS proves that segments are consistent with each other. This layer
runs in two steps that are invoked separately by the entity proving the program. First, zkMIPS is
invoked to run the input program and divide its execution into segments, which is done independently
of the main proving procedure. At the end, when all segment proofs have been generated, this layer
is invoked again to combine them into a single proof that shows the correctness of the entire program
execution.

The program division procedure periodically pauses the VM running the MIPS program after a
constant number of instructions (the size of segments, which is received as input by zkMIPS) and
stores the memory state, the PC and the cycle counter at that point. This set of variables is called
the image id and it is given as private input to the segment prover as it tells exactly where and how
to start the proving procedure. A compressed version of the image id is given as public input to the
segment prover. This compression replaces the memory state with a Merkle tree of the memory state,
which is enough to allow the verification of every memory access made by the Prover, using Merkle
paths.

When the continuation proving is invoked, image ids are used to show subsequent segments match,
by comparing the initial image id of each segment with the last image id of the previous segment.
Once the proof for the correspondence of a pair of subsequent segments is ready, their underlying
polynomials and FRI proofs are batched together (segment proofs are Starky) and are attached to
their correspondence proof, thus creating a proof for the execution of the larger segment trace.

This procedure is repeated recursively until a single proof is obtained, proving the correctness of the
entire program trace. Because continuation proofs are mostly FRI proofs, whose verification steps are
also recursive, a verifier circuit for these proofs is relatively simple. Thus, continuation proofs can be
written using Plonky instead of Starky, which further reduces proof size, proving time and verification
complexity. The fact that Plonky and Starky use the same field and have their polynomials low-degree
tested by the same protocol makes them fully compatible and composable with each other.

4.2 Segment proofs

The second proving layer is where the most expressive parts of zkMIPS proofs are generated. Given
the memory state, PC and cycle counter from the beginning of a segment, this prover executes the
program from that point and collects memory hashes from each instruction of that segment until the
segment ends. The image id from the last instruction is the output of that proof and should be equal
to the input of the next proof.

Segment and module traces are divided into columns containing 16-bit values. Because proofs
are written using Plonky2, 16-bit values are represented by Goldilocks elements, which are roughly
64 bits. A lookup verifies that values stored are inside the 16-bit range. This lookup uses a special
range counter column containing all values allowed. The reason for this 64-bit representation of
16-bit values comes from a trade-off: 16-bit values imply 216 elements in the range counter column and
a segment size at least this large; 32-bit values imply the segment size is greater than 232. Empirically,
segment sizes between 218 and 223 result in the best performance.

Since MIPS is a 32-bit architecture, the values stored in GPRs take up two columns each. However,
segment and module trace columns do not contain values from all GPRs in every cycle. Instead of
logging GPRs directly into the trace record, the segment prover logs them into a register file in the
format of Table 2, and then converts these values to a trace in the format of Table 15.

Including all registers in the trace record requires copy constraints to ensure values do not change
when they do not have to (when a register is not touched during the execution of an instruction).
Logging 32 register values of 32-bit each into 16-bit trace columns would require 64 columns for these
values, and 32 columns for variables selecting their copy constraints. Currently, zkMIPS trace record
has 57 columns, meaning GPR inclusion would increase trace size by more than 150%.

Each state of the register file where GPRs are logged to must be written to zkMIPS memory. This
means memory needs to be accessed in every instruction and register consistency is guaranteed by
memory and Keccak modules (memory accesses require Keccak-based Merkle paths) instead of the
segment proof. This approach might seem costly at first, but it completely removes the need for copy
constraints because the register file can be succinctly modified by constraint polynomials that change
specific memory positions.

27

Group Arithmetic MULT/DIV

1

OPCODE
COLS

IS ADD
2 IS ADDU
3 IS ADDI
4 IS ADDIU
5 IS SUB
6 IS SUBU
7 IS MULT
8 IS MULTU
9 IS MUL
10 IS DIV
11 IS DIVU
12 IS SLLV
13 IS SRLV
14 IS SRAV
15 IS SLL
16 IS SRL
17 IS SRA
18 IS SLT
19 IS SLTU
20 IS SLTI
21 IS SLTIU
22 IS LUI
23 IS MFHI
24 IS MTHI
25 IS MFLO
26 IS MTLO

27

SHARED
COLS

INPUT REG 0 AUX REG 0
MOD OUT
AUX RED

MOD
INPUT 028

29
INPUT REG 1

AUX REG 1

MOD MOD IS ZERO MOD
INPUT 130

MOD AUX
INPUT LO

31
INPUT REG 2

MOD
MODULUS32

33
OUTPUT REG

AUX REG 2
MOD AUX
INPUT HI

MOD
OUTPUT

OUTPUT
REG LO34

35 AUX INPUT
REG 0 AUX INPUT

REG DBL

MUL AUX
INPUT LO MOD QUO

INPUT

OUTPUT
REG HI36 MOD DIV DENOM IS ZERO

37 AUX INPUT
REG 1

MUL AUX
INPUT HI MULT

AUX LO
38
39

AUX INPUT REG 2
40
41

MULT
AUX HI

42
43
44
45
46

47

EXTRA
COLS

RANGE COUNTER
48 RC FREQUENCIES
49

AUX EXTRA

50
51
52
53
54
55
56
57 NUM ARITH COLUMNS

Table 15: Trace columns

28

These 57 trace columns are divided into three main groups described below:

• Opcode columns (1 to 26) define which arithmetic operation should be proven in a given row.

• Shared columns (27 to 46) contain columns used by module proofs. The most important columns
from this group are input and output register columns (27 to 34) which, as the name suggests,
receive the values input to and output by instructions. The role of each shared column changes
depending on the instruction, and sometimes zkMIPS uses macros to refer to these roles easily.
Table 15 shows these macros and to which shared columns they refer to.

• Extra columns (47 to 57) include columns used to verify other columns are well-formatted. The
most important columns from this group are the range counter column (47) and the frequency
counter columns (48), which count how many times the range counter value from the same row
appears in other columns, i.e. the multiplicity vector from the range counter lookup.

Once the segment and module traces have been generated, which happens in parallel as they encode
the same rows, they are compiled into segment and module trace polynomials. In parallel to module
proving, the segment provers can compile segment and module columns to LogUp polynomials.

4.3 Module proofs

The third proving layer is where the most meaningful parts of zkMIPS proofs are processed. This layer
ensures the correctness of polynomials defined in segment proofs, but in practice there is no distinction
between these two proving layers. The distinction made in this document is conceptual and tries to
abstract what is proved by pure Starky (third layer) from what is proved by lookup proofs (second
layer).

Constraint and witness polynomials for segment and module proofs can be generated and processed
in parallel because they are the same. Constraint polynomials are in theory the same; in practice, there
are no explicit constraints for segment proofs, since they are simply lookups. Witness polynomials, on
the other hand, evaluate to the same values in the same order, with segment columns being defined
sequentially and module columns non-sequentially; in other words, the set of values in segment columns
equals the union of set of values in module columns.

Since these module witness polynomials have their correctness evaluated by Starky proofs, they
are eventually low-degree extended to the same domains and proved in parallel. This LDE and the
subsequent FRI commit and query phases are executed at the end of each segment, along with the
lookup proof. The resulting proofs are combined into the segment proof.

The final version of this paper will elaborate on how constraint polynomials from module proofs
are generated and how these proofs are combined at the end of a segment proving.

4.4 On-chain proofs

The optional proving layer compiles the final hash-based Plonky proof, output by the continuation
process, into an elliptic-curve-based Groth16 proof. The verification of this proof requires a pairing
function that is natively supported by the EVM. This improves on-chain verification performance
because the hash functions necessary for FRI verification do not have to be simulated on-chain. In-
stead, only a succinct verification of this hash function (batched to the proof of modules) is performed
by means of a Groth16 proof for the hash function verification algorithm.

Given a hash of the initial memory state of a program, the final continuation proof guarantees
that, starting from the first instruction of this program, there exists a sequence of valid CPU states
that halts a MIPS VM with the correct result. This property ensures, by design, logic, memory and
register integrity.

29

5 Future work

The design described here is still a work in progress and will be continuously improved to ensure
zkMIPS remains relevant in the field. Whenever a new feature is added to the codebase, it will be
incorporated into this document. We invite everyone reading this document to contribute to our
GitHub repository. Readers can give us feedback on this paper in our feedback channel on Discord,
and ask questions in our questions channel.

Currently, the zkMIPS development team is preparing two modifications to the codebase. The
first is the implementation of a modification to the LogUp proof system. Our code currently uses the
same IOP from the original LogUp paper[9]. Recently, inspired by the Lasso proof system[13], the
paper was updated[11] with a protocol called GKR[7]. This update improved the IOP used to globally
verify polynomial properties of LogUp polynomials, allowing the optimization introduced by Lasso to
be employed in our proof system as well. This white paper will be updated in the coming weeks with
a detailed description of the revised LogUp protocol.

The second optimization is the replacement of the hash function used to compute Merkle trees.
The new hash function, called Poseidon2, is optimized for Zero-Knowledge proofs. The current hash
function, Keccak, was chosen for its native compatibility with EVM bytecodes, making on-chain verifi-
cation of the Groth16 proof cheaper. Poseidon2, on the other hand, is natively compatible with ZKPs,
making Merkle roots proving cheaper in the off-chain proving layers, thus indirectly reducing the final
proof size and verification time. This white paper will be updated in the coming weeks with a detailed
discussion on the hash function choice.

Once these updates to our codebase are ready, an additional performance section will be added with
a benchmark of the new proof system and a comparison to competitors, along with the description of
these modifications. Whenever new features are being considered for zkMIPS, the future work section
will be updated with a brief description of the planned updates.

30

https://github.com/zkMIPS/zkm
https://discord.com/channels/1125877344972849232/1246097911239016509
https://discord.com/channels/1125877344972849232/1246864756250251346

References

[1] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon interactive
oracle proofs of proximity, 2018.

[2] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Paper 2018/046, 2018.
https://eprint.iacr.org/2018/046.

[3] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. Deep-fri: Sampling
outside the box improves soundness. Cryptology ePrint Archive, Paper 2019/336, 2019. https:

//eprint.iacr.org/2019/336.

[4] Alexander R. Block, Albert Garreta, Jonathan Katz, Justin Thaler, Pratyush Ranjan Tiwari, and
Michal Zajac. Fiat-shamir security of fri and related snarks. Cryptology ePrint Archive, Paper
2023/1071, 2023. https://eprint.iacr.org/2023/1071.

[5] Gilles Brassard and Paul Bratley. Algorithmics - theory and practice. Prentice Hall, 1988.

[6] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Paper
2019/953, 2019. https://eprint.iacr.org/2019/953.

[7] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: Interac-
tive proofs for muggles. J. ACM, 62(4), sep 2015.

[8] Jens Groth. On the size of pairing-based non-interactive arguments. Cryptology ePrint Archive,
Paper 2016/260, 2016. https://eprint.iacr.org/2016/260.

[9] Ulrich Haböck. Multivariate lookups based on logarithmic derivatives. Cryptology ePrint Archive,
Paper 2022/1530, 2022. https://eprint.iacr.org/2022/1530.

[10] Mips architecture for programmers volume ii-a: The mips32 instruction set manual. https://

s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00086-2B-MIPS32BIS-AFP-6.

06.pdf, 2016.

[11] Shahar Papini and Ulrich Haböck. Improving logarithmic derivative lookups using gkr. Cryptology
ePrint Archive, Paper 2023/1284, 2023. https://eprint.iacr.org/2023/1284.

[12] PolygonZero. Plonky2: Fast recursive arguments with plonk and fri. https://github.com/

0xPolygonZero/plonky.

[13] Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking the lookup singularity with lasso.
Cryptology ePrint Archive, Paper 2023/1216, 2023. https://eprint.iacr.org/2023/1216.

31

https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2019/336
https://eprint.iacr.org/2019/336
https://eprint.iacr.org/2023/1071
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2022/1530
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00086-2B-MIPS32BIS-AFP-6.06.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00086-2B-MIPS32BIS-AFP-6.06.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00086-2B-MIPS32BIS-AFP-6.06.pdf
https://eprint.iacr.org/2023/1284
https://github.com/0xPolygonZero/plonky
https://github.com/0xPolygonZero/plonky
https://eprint.iacr.org/2023/1216

	Introduction
	MIPS architecture
	Program
	Instructions

	Arguments of Knowledge
	Preliminaries
	STARK
	Fast Reed-Solomon IOP of Proximity (FRI)
	Domain Extending for Eliminating Pretenders (DEEP)

	PLONK
	Plonky2
	LogUp

	High-level design of the zkMIPS protocol
	Continuation proofs
	Segment proofs
	Module proofs
	On-chain proofs

	Future work

