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Abstract

This document introduces zkMIPS, an advanced Zero-Knowledge Protocol (ZKP)
system designed for MIPS architecture. zkMIPS aims to provide a verifiable com-
puting solution to trust the computation results generated by untrusted computers.
The adoption of the MIPS architecture aligns perfectly with the vision of incorpo-
rating zkMIPS into diverse domains such as blockchains and IoT. In the blockchain
realm, zkMIPS is seamlessly integrated with blockchain Layer 2 technologies, offering
a ZKP layer 2 rollup solution. By harnessing the power of ZKP and leveraging the
robustness of the MIPS architecture, zkMIPS aims to fulfill its objectives effectively.
In non-blockchain systems including the Internet of Things (IoT), Virtual Reality
(VR), decentralized cloud computing, and zero-knowledge machine learning (zkML),
zkMIPS enables a secure communication channel by trusting devices’ computation
results. This document serves as a comprehensive introduction, shedding light on the
zkMIPS system as well as the possible integration with Layer 2 blockchain projects to
offer a hybrid rollup solution.
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1 Introduction

In recent years, the advancement of verifiable computing techniques, particularly in zero-
knowledge proofs (ZKPs), has enabled developers to ensure the trustworthiness of com-
putation results from untrusted parties. Among these achievements, zkMIPS introduces
a mechanism to demonstrate the integrity of any MIPS computation. Although initially
focused on layer 2 zero-knowledge (ZK) rollup solutions, zkMIPS holds broad applica-
bility, including Internet-of-Things (IoT), wearables, and more. zkMIPS facilitates quick
and easy proof of the validity for the computation results performed by untrusted par-
ties, offering a robust solution to ensure computational trust in a wide range of practical
applications.

In a ZKP system, one of the parties, called the Prover, wants to convince the other
party, the Verifier, that it possesses specific information [13,14]. This can involve proving
knowledge of a password, a specific solution to a problem, or the ability to execute a par-
ticular computation. Although existing methods in the area of ZKP are very promising,
applying these techniques to develop a high-performance system requires further innova-
tion and careful consideration. zkMIPS aims to create a cryptographic proof that validates
the execution of computations, with several concerns such as proof size, prover time, and
verifier time. The generated proof should be succinct to meet application requirements
and minimize storage and transmission overhead. Balancing these factors requires on-
going innovation to ensure that zkMIPS can be applied effectively and should be easily
integrated with existing applications with minimum effort.

zkMIPS is designed for the stable and well-established MIPS architecture to apply
ZKP techniques resulting in offering numerous advantages. The adoption of MIPS archi-
tecture brings benefits, such as small instruction set and the simplified design of efficient
ZKP circuits. Additionally, due to the stability of the MIPS architecture, integrating zk-
MIPS does not require significant alterations to its core design, making it compatible with
systems that compile computations to MIPS. In the realm of blockchain, the player in
Layer 2 solutions can accelerate the development of a ZKP rollup solution and enhancing
scalability and privacy features by applying zkMIPS technology. Furthermore, zkMIPS is
a natural choice for IoT applications, as the popularity of MIPS in IoT devices allows for
the seamless incorporation of verifiable computing capabilities. In general, zkMIPS takes
advantage of the strengths of the MIPS architecture, enabling the widespread implemen-
tation of ZKP techniques in domains ranging from blockchain solutions like Optimism to
IoT, Virtual Reality (VR), wearable devices, and more applications.

This document serves as an introduction to zkMIPS technology, covering various as-
pects of its implementation. Section 2 provides a comprehensive review of the applied
MIPS architecture within zkMIPS. Section 3 delves into the software system architecture
necessary for seamless integration, while also highlighting the integration of Optimism
technology for Layer 2 (L2) rollup purposes. The document proceeds to explore ZK pro-
tocols in Section 4, explaining how they provide succinct proof through the conversion of
computations into high-degree polynomials over a finite field, enabling efficient verifica-
tion by the Verifier. This section further elaborates on the ZKP approach employed by
zkMIPS. Finally, in Section 5, the document examines various zkMIPS applications, such
as zkRollup, decentralized cloud computing, and their suitability for IoT devices. Section
6 concludes the document.
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2 MIPS

The Microprocessor without Interlocked Pipelined Stages (MIPS) is a well-known and
widely adopted class of Reduced Instruction Set Computer (RISC) architectures that
were developed by MIPS Computer Systems. Over the years, MIPS has gained significant
prominence and found applications in various domains, including embedded systems and
video game consoles.

While MIPS has a strong presence in the industry, other RISC-based architectures
such as RISC-V have emerged more recently and are rapidly gaining popularity. One of
the advantages of MIPS is its fixed set of instructions, which simplifies the design of stable
zero-knowledge products for the market. In contrast, RISC-V offers a modular instruction
set that allows the incorporation of new custom instructions. This flexibility can be advan-
tageous in certain scenarios, but it also means that RISC-based zero-knowledge products
may require more modifications in the future to adapt to the evolving instruction set.

In the realm of blockchain Layer 2 solutions, applying MIPS architecture results in
less complicated circuits in ZK proof generation system. This makes MIPS an ideal fit for
practical blockchain L2 solutions built upon it.

It is important to note that there are multiple versions of MIPS, and zkMIPS specifi-
cally utilizes MIPS32 [21], which refers to the 32-bit implementations of the MIPS R3000
architecture [17].

2.1 MIPS Processor Architecture

Any computation starts with a well-defined initial state and is then modified through a
specific sequence of instructions. In the case of the MIPS processor, the associated state
comprises various elements depicted in Figure 1.

By maintaining and modifying this state through a given sequence of instructions,
MIPS processors perform computations and execute programs. The emulator applied in
zkMIPS emulates a MIPS processor and operates on states to simulate the execution of
MIPS instructions and computations. The MIPS architecture is depicted in Fig. 1. Also,
the CPU registers are as follows.

• R0, R1, ..., R31: The MIPS processor architecture includes a set of 32 general-
purpose registers. These registers are used to store data during computations and
operations such as arithmetic, data storage, and control flow. Each register is 32
bits wide.

• HI and LO: They are special-purpose registers to hold the results of operations,
particularly useful when performing computations that involve larger data sizes or
require extended precision. The HI and LO registers are used to store the results of
integer multiply, divide, and multiply-accumulate operations.

• PC - the Program Counter value. During the instruction time of an instruction, this
is the address of the instruction word.

• A memory consisting of a set of 4KB pages, each page consisting of 212 words. It
provides the necessary storage for program instructions and data.
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Figure 1: MIPS processor architecture

2.2 MIPS Instruction set

In zkMIPS we implement MIPS-1 instruction set architecture (R3000), which consists of 69
instructions. We do not implement floating point instructions or coprocessor extensions.
For a comprehensive list of these instructions, please refer to Appendix A.

3 zkMIPS - Software System Architecture

In this section, we first review the main software components of the zkMIPS system. Then,
we provide an example to demonstrate how to integrate zkMIPS with an L2 blockchain
solution.

3.1 Software Components

The software system contains four main components as follows.

• ELF loader that reads the MIPS program and loads it into MIPS VM.

• MIPS VM that executes the MIPS program and creates an execution trace.

• Prover (Proof Generator) that generates a proof based on the execution trace con-
sidering the targeted application requirements such as the proof size, Prover and
Verifier times.

• Communication Manager that fetches the environment state and variables data
from the MIPS program environment.

Any program written in C, Go, Rust, etc., can be compiled using a generally available
MIPS compiler into MIPS R3000 BE ELF executable. The resulting ELF file is loaded
into MIPS VM with the ELF loader. The VM executes the input executable. Communi-
cation Manager implements syscalls handlers, which can be used by MIPS program during
execution. Finally, the MIPS VM generates an execution trace for the Prover. The Prover
then creates a ZK Proof. The details of this last step will be explained in the next section.
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Figure 2: zkMIPS software architecture
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Figure 3: zkMIPS software architecture integration with L2 rollup solutions

3.2 Hybrid Rollup Example: Integrating zkMIPS with Blockchain L2
Solutions

zkMIPS offers seamless integration with existing Layer 2 (L2) solutions, including the Op-
timism architecture [10]. One of the standout features of zkMIPS is its ability to generate
succinct proofs, enabling support for ZK rollups and facilitating the implementation of
hybrid rollups. This means that L2 optimistic solutions can leverage zkMIPS to generate
proofs for their computations, potentially leading to a reduction in the withdrawal period
from the current 7-day duration to shorter timeframes.

To connect zkMIPS with L2, users need to implement an L2-specific Communication
Manager and a validation program for state transition. This program is then compiled
to MIPS and executed by a MIPS VM. zkMIPS executes the program and generates ZK
proof of execution. The proof can be sent to an on-chain proof verifier, which can trigger
a state transition or allow withdrawals if the proof is valid. The main components of the
integrated system are illustrated in Figure 3.

The main components of the system integration are explained as follows.
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• Sequencer: It receives L2 transactions from sources such as wallets or bridges and
uses them to compose a new L2 block. The block is then submitted to the L1 rollup
smart contract as a transaction batch.

• L1 Rollup Smart Contract: This component maintains a view of the L2 state and
has the ability to validate ZK proofs. It also implements L2 to L1 fund withdrawals.

• StateMonitor (part of Communication Manager): This component reads the nec-
essary L2 state for input validation.

• BatchMonitor (part of Communication Manager): This component is connected
to L1 and subscribes to new inputs.

• MIPS VM: This component, as explained in the previous section, executes the
compiled MIPS program.

• Prover: This component, as explained in the previous section, generates ZK proofs
based on the execution trace of the MIPS program.

Fig. 3 illustrates zkMIPS workflow in the integration with L2 Rollup solutions. The
parts which are coming from L2 technology stack are labeled with ‘(Blockchain L2 Sys-
tem)’. Also, the parts which are developed for zkMIPS are labeled with ‘(zkMIPS)’. The
arrows show the general direction of the data flow.

1. Wallet software or bridge smart contracts initiate new transactions and forward them
to the L2 Sequencer.

2. The L2 Sequencer collects a batch of transactions and applies them to a local state,
thereby creating a new L2 block. Once the block is validated and applied, a batch
is formed, which includes the list of transactions and the latest state root of the L1
rollup.

3. The zkMIPS component, known as the Batch Monitor, reads the new batch from
the L1 rollup smart contract.

4. Batch Monitor passes the batch to the State Monitor component.

5. The State Monitor also retrieves the required L2 state from the L2 node to validate
the input batch.

6. The retrieved state and the input batch are then passed to MIPS VM by the State
Monitor component.

7. The MIPS VM carries out the execution of the MIPS program and meticulously
verifies the input batch. As a result of this execution, an execution trace is generated,
capturing the detailed sequence of operations. This execution trace serves as input
for the subsequent step in the process, as it is handed over to the ZK Prover for
further processing and generation of a ZK proof.

8. Prover generates a ZKP proof based on the program’s execution trace.
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4 zkMIPS - Proof Generation

Every ZK system comprises two main components: proof generation and proof verification.
In this section, we explain the proof generation process. However, before delving into that,
we provide an introduction to interactive and non-interactive ZKP approaches, followed
by a review of our proof generation steps.

4.1 Introduction

We first review some fundamentals before introducing the proof generation process.

4.1.1 Interactive vs. non-interactive

Fiat and Shamir observed that the Prover can generate random bits by applying a hash
function to the messages sent so far, simplifying the process [11]. For example, after
sending the first message m1, the Prover defines c1 = h(public parameters,m1) as the
Verifier’s first challenge. For the second message, the Prover computes m2, c2 = h(c1,m2);
for the third, m3, c3 = h(c2,m3), etc. This creates a dependency on earlier messages due to
the hash of a hash. In a non-interactive protocol, the Prover independently produces the
protocol transcript public parameters,m1, c1,m2, c2, . . . ,mn without requiring an actual
Verifier. An external party can verify the correctness of the proof by replicating all of the
Prover computations and confirming the accuracy of the final message mn.

Non-interactive methods offer several benefits over interactive methods. First, they
eliminate the need for ongoing communication between the Verifier and Prover during the
proof process. This simplifies the implementation and reduces communication overhead,
making verification more efficient. Second, they enable the Prover to generate the entire
proof transcript independently, without relying on the presence or availability of a Verifier.
This self-contained nature allows for easier distribution and verification of proofs by third
parties or independent verifiers [2, 24]. zkMIPS follows a non-interactive approach in its
ZKP design.

4.1.2 Execution Trace

The overall state of an automaton is defined by the values of a finite list of variables. In this
setup, a valid computation can be defined as a sequence of states from some well-defined
initial state to a final state, in which each state transition represents a valid computation
step. We can represent this valid sequence of states as a table whose columns represent
the list of variables defining the automaton’s overall state and whose rows represent each
step of the computation. This table is known as the execution trace.

We call the minimal set of automaton variables the CPU variables. Although it suffices
to evaluate the execution of a program, we may choose to include in the trace an additional
set of variables intermediary to the execution of each opcode from the program. We
call this additional set the program variables and, in practice, it helps to evaluate the
correct execution of programs by modeling some opcodes as sequences of more ZKP-
friendly operations.
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Table 1 describes the list of columns/variables from each row/step of the execution
trace. From this table, we can see that the execution trace contains the variables that are
the CPU registers. Thus, it contains all the information necessary to independently verify
each computation step.

The set of CPU registers from the execution trace is inspired by TinyRAM [6] as this
architecture describes a minimal working CPU that is simple enough to be easily converted
to STARK instances. The set of variables shown in Table 1 help to evaluate the correct
execution of complex opcodes during ZKP steps.

Variable Size Type

1 PC 32 bits

CPU

2 HI 32 bits
3 LO 32 bits
4 Register[0] 32 bits
5 Register[1] 32 bits
6 Register[2] 32 bits
...

...
...

35 Register[31] 32 bits

Table 1: List of Variables

4.2 Proof Generation Steps

We are now going to review our method. The first part applies the techniques described
in [4, 5] by E. Ben-Sasson et al., [22] by StarkWare, and in [12, 23] by A. Gabizon et al.
and Polygon. We then continue presenting our method in Section 4.3 to demonstrate our
approach to generating a small-size proof. To start let’s review the basic terminologies.

4.2.1 Basic Terminologies

Once the execution trace for an instance of the computation is defined, it can be converted
to an input witness and follow the ZK steps to generate a proof.

1. Let F be a finite field of large prime order p.

2. Let F∗ be the corresponding multiplicative group of order p − 1. Also, let k be the
largest positive integer such that 2k|p− 1.

3. Let G be the trace evaluation domain that is a proper cyclic subgroup of F∗ with
order N satisfying N = 2n where n < k. Note that G is constructed by the N -order
unity root, g = ωN . Therefore, G = {gi|i ∈ {0, 1, .., N − 1}}.

4. Let T ∈ FN×R be the execution trace table with N rows and R columns such that
Tij is the jth column of the ith row.

5. Let Pi(x) ∈ F[x] be a polynomial constructed by column i of the trace table T such
that Pi(g

j−1) = Tij .
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6. Let H be the evaluation domain that is a non-trivial coset of a cyclic subgroup of
F∗ of order M where M = 2m and M = βN . Also, β is the blowup factor. Consider
generator h, H = {hi|i ∈ {0, 1, ..,M − 1}}.

7. Let K be a field extension of F, |K| = pe where e ≥ 2.

8. Let V be the number of gates in Plonk method.

9. Let PL(x), PR(x), PO(x) ∈ F[x] be a polynomial constructed by left,right,output
wires in gates in Plonky2 method, respectively.

4.2.2 Algebraic Intermediate Representation (AIR): Transforming the Com-
putation into a Polynomial

The first phase of the protocol models the instructions of the input MIPS program as
a set of polynomial constraints. These constraints serve as input for subsequent phases,
ensuring the correctness of the protocol by accurately capturing the program logic. This
phase algebraically compiles the program into a preliminary representation that needs
to be proven. In summary, the Algebraic Intermediate Representation (AIR) [4, 5] is a
polynomial representation specifically designed to facilitate efficient verification of large-
scale computations. We briefly summarize the applied steps as follows.

1. The Prover executes the computation to generate an execution trace table that
represents the input and output data of the computation being proven. Note that
the execution trace columns are padded with N −U zeros where U is the line of the
codes of the computation.

2. The Prover calculates separate trace polynomials Pi : G → F, i ∈ {1, .., R} for each
column in the execution trace table using the Inverse Fast Fourier Transform (IFFT).
Graphically, this means that we model the execution trace table as Table 2.

step Variable[1] Variable[2] . . . Variable[R]

1 P1(g
0) P2(g

0) . . . PR(g
0)

...
...

...
. . .

...

U P1(g
U−1) P2(g

U−1) . . . PR(g
U−1)

Table 2: Execution trace table as AIR polynomials

Note: This encoding proceeds using elements from G, which means the j-th trace
column x⃗ = [x1, . . . , xN ] is encoded by Pj such that Pj(g

i−1) = xi. In addition,
(P1(g

i−1), . . . , PR(g
i−1)) and (P1(g

i), . . . , PR(g
i)) represent a valid state transition

from state i to the next one if and only if Eq. 1 holds.

Ci(P1(g
i−1), . . . , PR(g

i−1), P1(g
i), . . . , PR(g

i)) = 0, ∀i, 0 < i < U (1)

3. The Prover generates Pi : H → F using the Fast Fourier Transform (FFT) [9].
This improves the soundness of the protocol. The new polynomial is a Low Degree
Extension (LDE) of the first one. The coset H is the evaluation domain, while
the ratio β = M

N = 2m−n is the blow up-factor that is the ratio of the size of the
evaluation domain H over the size of the trace evaluation domain G.
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4. The Prover generates a commitment for the polynomials Pi, i ∈ {1, .., R} using the
Merkle tree root of P1, P2, ..., PR values on H, and sends it to the Verifier.

The summerize the described AIR steps as shown in Protocol 1.

Protocol 1 Algebraic Intermediate Representation (AIR)

1: The Prover creates the execution trace.
2: The Prover generates polynomials Pi on G.
3: The Prover evaluates Pi on the evaluation domain H using FFT.
4: The Prover generates Merkle tree of Pi values on H and considers its root as

commitAIR.
5: The Prover sends commitAIR to the Verifier.

The explained steps allow the verification of subsequent computational states, we will
follow an extended AIR approach that improves the described method by verifying de-
pendency between non-subsequent states. Therefore, it reduces the number of necessary
constraints.

4.2.3 DEEP-Algebraic Linking Interactive Oracle Proof (DEEP-ALI): Gen-
erating constraints for the polynomial

Once AIR constraints have been generated, the protocol proceeds to a phase where a few
additional constraints are considered, namely boundary, memory and general constraints
that restrict the behavior of the polynomial at the edges of the computation domain, check
the integrity of memory operations, and ensure generic constraints on all types of MIPS
opcodes, respectively (see Appendix B for a formal definition).

In Algebraic Linking IOP (ALI), new constraints are defined algebraically and model
the last properties that a correct execution of the target MIPS program must fulfill. Subse-
quently, all constraints are compiled into a polynomial comprising all of them by applying
the random coefficients sent by the Verifier. Therefore, the Prover and the Verifier can
finally engage in an Interactive Oracle Proof (IOP) to evaluate its validity.

We also apply the Domain Extending for Eliminating Pretenders (DEEP) method to
prevent cheating in the opening phase of the ALI method [7]. This method can be used
to evaluate w.h.p. whether a committed polynomial function H → F indeed corresponds
to a polynomial. It increases soundness of the system as it allows to verify in a single
round that the rational function is not only close to a polynomial of degree at most d,
but is indeed a polynomial of degree at most d. We can see this technique as an LDE
being applied to the opening phase after the commitment phase. This domain extension
only aims to catch cheating provers in the opening phase, since extending the commitment
phase as well would require committing to the whole F∗ \G.

The idea behind this method is to sample points outside the box, where the box refers
to G ∪H and the space we sample is F∗ \ (G ∪H) (remember that the polynomials input
to ALI is LDEs from G to H, so we consider a box containing both). More specifically, we
let the Prover commit to some polynomial function f : H → F and check this commitment
through a polynomial difference in f : F∗ \ G → F, i.e. a difference between values from
H and F∗ \ (G ∪H).

We apply DEEP-ALI method by Ben-Sasson et al. [4,5,7] which is summarized below.
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Protocol 2 Domain Extending for Eliminating Pretenders in Algebraic Linking IOP
(DEEP-ALI)

1: The Verifier chooses α ∈R F∗ and sends it to the Prover.
2: The Prover generates fvalidity : G → F as follows

fvalidity(x) =

|Cset|∑
i=1

αiCi(P1(x), ..., PR(x), P1(gx), ..., PR(gx))

x− gi−1
(2)

where Cset is a set of constraints.
3: The Prover evaluates fvalidity on the evaluation domain H using FFT.
4: The Prover generates Merkle tree of fvalidity values on H and considers its root as

commitALI .
5: The Prover sends the commitment commitALI to the Verifier.
6: The Verifier chooses z ∈R F∗ \ (G ∪H) and queries

fvalidity(z), P1(z), . . . , PR(z), P1(gz), . . . , PR(gz)
7: The Verifier chooses t ∈R H and queries

fvalidity(t), P1(t), . . . , PR(t), P1(gt), . . . , PR(gt)
8: if Eq. 2 does not hold for fvalidity(z) and fvalidity(t) then
9: The Verifier rejects

10: else
11: The Verifier accepts

4.2.4 Permutations over Lagrange-bases for Oecumenical Non-interactive ar-
guments of Knowledge (Plonk)

An alternative way to construct fvalidity is by utilizing the Permutations over Lagrange-
bases for Oecumenical non-interactive arguments of Knowledge (Plonk) arithmetization
[12]. Plonk arithmetization is gate-based, implying that the constraint polynomials aim to
replicate circuit logic rather than CPU states as in AIR. In practice, the main distinction
is that Plonk establishes constraints for each gate and employs selector polynomials to
determine the gate logic/polynomial to be applied at each stage. On the other hand,
AIR defines a distinct constraint polynomial for each computation step, modeling the
permissible state transition.

Plonk is a SNARK (Succinct Non-Interactive Argument of Knowledge) proof system
that incorporates a universal and updatable trusted setup. This means that the trusted
setup process can be performed once and then reused for all subsequent computations
involving circuits of smaller sizes compared to the original computation [12].

In the initial phase of the system, the instructions of the input program are modeled
as an ”arithmetic circuit” format. After generating these gates for the circuit, assuming
left and right inputs and an output for each gate, an execution trace table, denoted as
A = [Aij ], i = 1, .., V, j = 1, 2, 3, is created. In this table, the values of Ai1, Ai2, and Ai3

correspond to the input and output wires of the i-th gate, respectively.

The subsequent phase involves transforming the arithmetic circuits into a constraint
system. This system comprises two types of constraints: gate constraints and copy con-
straints. Each gate constraint corresponds to a specific gate in the arithmetic circuit. On
the other hand, copy constraints relate to different gates, for example the output of gate i
which should be the same as the left input of gate i+ 1. The copy constraints guarantee
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that the values in the wires remain consistent throughout the computation. An example
of a system with addition and multiplication gates are as described in Protocol 3.

Protocol 3 Gate Constraints in Plonk Arithmetization (addition and multiplication)

1: The Prover generates left QL(x), right QR(x), and output QO(x) polynomials such
that QL(g

i−1) = Ai1, QR(g
i−1) = Ai2 and QO(g

i−1) = Ai3 for each i = 1, .., V , using
FFT.

2: The Prover encodes the gates using polynomials QL(x), QR(x), QO(x) and a selector
polynomial S(x) as

M(x) = S(x)
(
QL(x)+QR(x)

)
+
(
1−S(x)

)(
QL(x)QR(x)

)
−QO(x) ;x ∈ {1, g1, ..., gV−1}

(3)
where S(gi−1) = 1 if i-th gate is an addition gate, and S(gi−1) = 0 if i-th gate is a
multiplication gate.

3: The Prover generates fvalidity,1 as follows

fvalidity,1(x) =
M(x)∏V−1

i=0 (x− gi)
(4)

The copy constraints are implemented using polynomials that encode a deterministic
ordering of gate inputs and the same ordering permuted by their respective wires. Then, it
must be checked whether such a permutation holds, which can be done with an auxiliary
accumulation polynomial and a specific protocol to evaluate the final accumulated value.
An example of a system with two-input and one-output gates are as described in Protocol
4.

Protocol 4 Copy Constraints in Plonk Arithmetization (two-input and one-output gates)

1: The Verifier chooses random values ζ, γ ∈ F and sends them to the Prover.
2: The Prover generates functions f1, f2 and f3 as follows:

f1(i) = h1(g
i−1) + iζ + γ, i ∈ {1, .., V } (5)

f2(i) = h2(g
i−1) + σh1h2(i)ζ + γ, i ∈ {1, .., V } (6)

where functions h1 and h2 are either QL, QR or QO. Moreover, σh1h2 is a known
permutation corresponding to the domain of h1 and h2. Note that h1 and h2 should
satisfy the following copy constraint h1(g

i−1) = h2(g
σh1h2

(i−1)). Additionally,

f3(x) =

{
1, x = g0∏

j<i
f1(j)
f2(j)

, x = gi
(7)

3: The Prover generates function fvalidity,2 as follows:

fvalidity,2(x) =
f3(gx)f2(log

x
g )− f3(x)f1(log

x
g )∏V−1

i=0 (x− gi)
, x ∈ {g0, g1, ..., gV−1} (8)

Note that Protocol 4 is executed at most six times to handle different copy con-
straints, which are defined as follows: 1) left inputs QL(g

i−1) = QL(g
σQLQL

(i−1)), 2)
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right inputs QR(g
i−1) = QR(g

σQRQR
(i−1)), 3) outputs QO(g

i−1) = QO(g
σQOQO

(i−1)), 4)
left and right inputs QL(g

i−1) = QR(g
σQLQR

(i−1)), 5) left input and output QL(g
i−1) =

QO(g
σQLQO

(i−1)), 6) right input and output QR(g
i−1) = QO(g

σQRQO
(i−1)). After executing

Protocol 4 for the various copy constraints, the system continues by running Protocol 5
to combine the copy constraints.

Protocol 5 Constraints Combination in Plonk Arithmetization
1: The Verifier chooses random values α1, .., αk+1 ∈ F where k is the number of executing

protocol 4, and sends the random values to the Prover. Note that k ≤ 6.
2: The Prover executes Protocol 4 and generates the output fvalidity,2 in each execution

round. We shows the outputs as f i
validity,2 where i ∈ {1, .., k}.

3: The Prover generates fvalidity as follows

fvalidity(x) =
k∑

i=1

αif
i
validity,2(x) + αk+1fvalidity,1(x), x ∈ {g0, g1, ..., gV−1} (9)

The gate-based arithmetization employed in Plonk makes it well-suited for algorithmic
descriptions that resemble circuits. However, when it comes to algorithmic descriptions
resembling CPU operations, the utilization of Plonk arithmetization requires the inclusion
of additional copy constraints. These constraints are necessary to ensure that register
values remain unchanged when they are not intended to be modified.

4.2.5 Fast Reed-Solomon IoP of proximity (FRI)

We continue the system by applying the Fast Reed-Solomon IOP of Proximity (FRI) tech-
nique. In FRI, the Prover aims to prove the closeness of fvalidity to low-degree polynomials.
In fact, it aims to prove that it is close to a polynomial of low degree instead of verifying
that fvalidity is of low degree [3]. For this section, we follow the method described in [20]
by Masip-Ardevol et al. and [16] by Haböck. We first review the general approach and
then explain it in Protocol 6.

The idea is that the Prover splits a polynomial gi into even and odd polynomials,
according to the degree of each of its factors. Namely, gi is split into gi,1, gi,2 : Hi+1 → K
where Hi+1 = {x2|x ∈ Hi} and deg(gi,1), deg(gi,2) ≤ 1

2 · deg(gi). Algebraically, gi can be
represented as a combination of gi,1 and gi,2 as in Eq. 10. Then, the Prover substitutes
this factor x by some value vi ∈ K∗ randomly chosen by the Verifier, denotes the resulting
polynomial by gi+1, as in Eq. 11, and commits to it.

gi(x) = gi,1(x
2) + xgi,2(x

2) (10)

gi+1(x) = gi,1(x) + vigi,2(x) (11)

Note that the procedure above will be performed repeatedly for a number of l = log(d)
times where d = deg(fvalidity(x)). Furthermore, the PCS we use to commit to each gi is
a Merkle tree with M leaves. When the Verifier queries gi(s), s ∈ Hi, the Prover can
simply respond with the Merkle path corresponding to the leaf of gi(s). In summary, FRI
is shown in Protocol 6.
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Protocol 6 DEEP version - Fast Reed-Solomon IOP of Proximity (FRI) for fvalidity

1: The Prover sets g0(x) =
fvalidity(x)−fvalidity(z)

x−z .

2: The prover creates commit commitfg0 using g0(x) values on H and send it to the
Verifier.

3: Let d = deg(g0(x))
4: for all 0 ≤ i < log(d) do
5: The Prover splits gi into gi,1, gi,2 : Hi+1 → K based on Eq. 10.
6: The Verifier chooses vi ∈R K∗ and sends it to the Prover.
7: The Prover generates gi+1 based on Eq. 11
8: The Prover generates a Merkle tree of gi+1 values on Hi+1 and considers its root as

commitfgi+1 .

9: The Prover sends the commitment commitfgi+1 to the Verifier.
10: The Verifier chooses s ∈R Hi and sends it to the Prover.
11: The Prover generates π1 =

(
gi(s), gi(−s), gi+1(s

2)
)

12: The Prover generates π2 as the Merkle tree path corresponding to the leaf that
contains gi+1(s

2).

13: The Verifier generates g∗ = gi(s)+gi(−s)
2 + vi

gi(s)−gi(−s)
2s .

14: if (g∗ ̸= gi+1(s
2)) or (π2 does not match commitfgi+1) then

15: The Verifier rejects and terminates the protocol.
16: The Verifier accepts

The system continues running FRI with a different setup as follows.

Protocol 7 DEEP version - Fast Reed-Solomon IOP of Proximity (FRI) for trace poly
nomials

1: The Prover sets g0(x) =
∑R

i=1 α
i−1 · Pi(x)−Pi(z)

(x−z)(x−gz) .

2: The prover creates commit commitPg0 using g0(x) values on H and send it to the
Verifier.

3: Let d = deg(g0(x))
4: for all 0 ≤ i < log(d) do
5: The Prover splits gi into gi,1, gi,2 : Hi+1 → K based on Eq. 10.
6: The Verifier chooses vi ∈R K∗ and sends it to the Prover.
7: The Prover generates gi+1 based on Eq. 11
8: The Prover generates a Merkle tree of gi+1 values on Hi+1 and considers its root as

commitPgi+1
.

9: The Prover sends the commitment commitPgi+1
to the Verifier.

10: The Verifier chooses s ∈R Hi and sends it to the Prover.
11: The Prover generates π1 =

(
gi(s), gi(−s), gi+1(s

2)
)

12: The Prover generates π2 as the Merkle tree path corresponding to the leaf that
contains gi+1(s

2).

13: The Verifier generates g∗ = gi(s)+gi(−s)
2 + vi

gi(s)−gi(−s)
2s .

14: if (g∗ ̸= gi+1(s
2)) or (π2 does not match commitPgi+1

) then
15: The Verifier rejects and terminates the protocol.
16: The Verifier accepts

Finally, to prove and verify the validity of the whole MIPS program execution with
soundness ϵ, the Prover and the Verifier engage in Protocol 8.
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Protocol 8 Scalable and Transparent Argument of Knowledge (STARK)

1: for all 0 ≤ i < logβ(ϵ) do
2: The Prover and the Verifier engage in Protocol 6.
3: The Prover and the Verifier engage in Protocol 7.
4: The Verifier accepts

4.2.6 Stark and Plonky2

zkMIPS utilizes two main proof generation methods: Starky and Plonky2. Starky consists
of the AIR, ALI, and FRI parts, as explained in the previous sections. On the other
hand, Plonky2 is a SNARK proof system that combines the Plonk and FRI parts. It is
worth noting that FRI does not require a trusted setup. With this introduction, we will
explain the zkMIPS proof generation architecture in the next section that applies Starky
and Plonky2 methods.

4.3 Proof Generation

We first focus on the composition step. Different types of ZK proof require different
amounts of resources, such as memory, prover time, verifier time, proof size, and gas cost
(for L1), among others. Proof composition allows us to combine two different types of
proof, creating the best of both worlds.

As an example, consider a proof πb of the correctness of the execution of a batch
of transactions. When STARK is applied, a large proof is generated (considering the
required blow-up factor), resulting in longer verification times. The Prover can execute
the verification process using its own generated proof, πb, and provides a new proof πv
demonstrating the correctness of running the verification process. Since the second proof
is meant to show the correctness of a fixed verification program, it can be optimized to
provide a shorter proof size when combined with πb. Finally, πv can be verified by an
actual verifier, as shown in Figure 4.

Prover Prover Verifier
Transactions

batch 

Figure 4: Composition

In the recursion stage, the first proof is generated by the first Prover using program
execution. Then, the output proof is passed as input to the proof generation process, and
the process is recursively repeated. Figure 5 shows the process of recursive provers.

Prover Prover Prover
Transactions

batch Prover

Figure 5: Recursion

By employing an aggregation technique, multiple proofs can be combined and aggre-
gated into a single proof. This consolidated proof can be verified in a single step, thereby
reducing the overall cost of verification. The aggregation technique also offers the ad-
vantage of generating proofs for smaller batches of transactions. As a result, the proving
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time is significantly decreased compared to generating a proof for a large batch of trans-
actions [8, 15,18].

4.3.1 zkMIPS Proof Architecture

We want to use composition, recursion, and aggregation to prove the correct execution of
several batches of transactions. Figure 6 shows the overall process.

Composition Stage

Prover

Prover

Prover

...

Prover

Prover

Prover

...

Starky Plonky2

Recursive
Prover

Recursive
Prover

Recursive
Prover

...

Plonky2

Prover

...

Aggregation StageRecursion Stage

Plonky2

Figure 6: Proof generation architecture with composition, recursive, and aggregation

Confirmed transactions are batched to n batches; consequently, we can compute STARK
proofs π1, π2, ..., πn for each of these batches in parallel. In the composition stage, the sys-
tem generates πv,1, πv,2, ..., πv,n with a compressed and normalized size..

The resulting normalized and compressed proofs πv,1, πv,2, ..., πv,n can be further opti-
mized by applying k steps of recursion. Now, the resulted proofs πc,1, πc,2, ..., πc,n can be
used in batching step to make them into one proof and then, validate only the final proof
π. Finally, the outputs of the recursion stage πc,1, πc,2, ..., πc,n, can be aggregated into a
single efficient proof π in the aggregation stage.

5 Applications of zkMIPS

5.1 Ethereum Layer 2 Rollup

zkMIPS has valuable applications in Layer 2 (L2) blockchain solutions. L2 solutions aim
to alleviate the scalability limitations of the underlying Layer 1 blockchain by processing
transactions off-chain. Using zkMIPS, participants can cryptographically prove the va-
lidity of off-chain transactions in the Ethereum blockchain without revealing the specific
details of each transaction on the public blockchain. This ensures the integrity of trans-
actions. In addition, multiple transactions can be aggregated into a single proof, reducing
the computational overhead required for verification and enhancing scalability. The pro-
vided proof guarantees the correctness of the transaction execution and hence reduces the
withdrawal time of the processed fund. Fig. 7 provides an overview.
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Figure 7: zkMIPS in Ethereum L2 solutions

5.2 Internet-of-Things (IoT)

zkMIPS, utilizing the MIPS instruction set, holds promises to add verifiable commuting
functionalities to IoT, VR, and wearable devices that incorporate MIPS processors. In the
realm of IoT, zkMIPS can offer secure and privacy-preserving communication protocols
for connected devices. By leveraging ZKP, zkMIPS can enable secure data exchange,
authentication, and integrity verification within IoT networks. This ensures that sensitive
information remains confidential and protected against unauthorized access.

In the context of Virtual Reality (VR), zkMIPS can contribute to improved privacy and
security in VR environments. zkMIPS can enable users to interact and engage in virtual
experiences while maintaining the confidentiality of their personal data and activities. This
includes safeguarding sensitive user information, such as biometric data or behavioral
patterns, from potential threats. One such application can be explained through VR
concerts that are rising in popularity. In one such example, a concert organizer may want
to issue tickets in the form of non-fungible tokens (NFTs) to concert givers, but to avoid
keeping data due to General Data Protection Regulation (GDPR) and other information
laws, they can utilize this feature in order to register concert attendees through the public
addresses of these NFTs - due to power of zero-knowledge, the organizer only needs the
proof that a ticket has been paid for by a certain address, while the attendee can enjoy
the concert live, without worrying about whether their data are being tracked.

Furthermore, in wearable devices that utilize MIPS architecture, zkMIPS can offer
privacy-enhancing features and provide secure and private interactions with connected
devices and networks. This can be particularly crucial for wearables that handle sensitive
user data, such as health-related information or personal fitness metrics. Fig. 8 provides
an overview.
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Figure 8: zkMIPS in Internet-of-Things (IoT)

5.3 Decentralized Cloud Computing

zkMIPS introduces an exciting opportunity for decentralized cloud computing systems.
With zkMIPS, the computations can be offload to the cloud, leveraging the power of thou-
sands of untrusted processors to execute them swiftly. Despite the untrusted nature of
these processors, the computation result can still be trusted when using zkMIPS. This
breakthrough paves the way for innovative applications in secure and scalable cloud com-
puting.

Figure 9: zkMIPS in Decentralized Cloud Computing

5.4 Zero-Knowledge Machine Learning (zkML)

In the machine learning (ML) world, the use of ZKP has the potential to verify the
application of a given ML model or hide the user’s valuable data. This is referred to as
zero-knowledge machine learning (zkML). Since the weight values within an ML model are
considered proprietary information held by service providers, clients should have the means
to verify the correctness of the results without accessing the trained model. Moreover,
when a third party examines the results, it should be possible to confirm their accuracy
even without the user’s input data [19]. Figure 10 shows a scenario in medical systems
where a patient sends their ECG to an ML Service Provider, and the processed result is
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sent back to their physician. As depicted, the physician requires a means to verify the
correctness of the process.

Figure 10: zkMIPS in Zero-Knowledge Machine Learning (ZKML)

The utilization of zkMIPS can be expanded across various applications and scenarios.
Consequently, it has become crucial for users to take advantage of ML computations
without revealing the input values in order to preserve users’ privacy.

6 Conclusion

This document provides an overview of the steps involved in the zkMIPS zero-knowledge
architecture. As the project continues to evolve, we anticipate updating this document on
a monthly basis or more frequently, if necessary.

We are also aware that other teams are simultaneously working on implementing new
techniques and solutions that could significantly improve the performance of zkMIPS.
We closely monitor the progress of these projects to evaluate their potential integration
into zkMIPS as soon as the corresponding software libraries or final techniques become
accessible. If such an integration occurs, we will report on it in this document.

We would like to acknowledge the MetisDAO Foundation for its support in the zkMIP
project. Their participation has been instrumental in advancing the project’s goals. We
appreciate the guidance and assistance provided by them throughout this journey.
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A Implemented MIPS Instructions

Tables 3 to 10 describe instructions from our MIPS Instruction Set, classified according
to [17]. A detailed description for each instruction can be found in the MIPS32 [21] or
MIPS R3000 [17] documentation, as specified in the last column of each instruction row.

Mnemonic Operands Instruction Reference

1 ADD rt, rs, rt Add Word MIPS32

2 ADDI rt, rs, imm Add Immediate Word MIPS32

3 ADDIU rt, rs, imm Add Immediate Unsigned Word MIPS32

4 ADDU rd, rs, rt Add Unsigned Word MIPS32

5 CLZ rd, rs Count Leading Zeros in Word MIPS32

6 DIV rs, rt Divide Word MIPS32

7 DIVU rs, rt Divide Unsigned Word MIPS32

8 MUL rd, rs, rt Multiply Word to GPR MIPS32

9 MULT rs, rt Multiply Word MIPS32

10 MULTU rs, rt Multiply Unsigned Word MIPS32

11 NEGU rd, rs Negate Unsigned Integer R3000

12 SLT rd, rs, rt Set on Less Than MIPS32

13 SLTI rt, rs, imm Set on Less Than Immediate MIPS32

14 SLTIU rt, rs, imm Set on Less Than Immediate
Unsigned

MIPS32

15 SLTU rd, rs, rt Set on Less Than Unsigned MIPS32

16 SUBU rd, rs, rt Subtract Unsigned Word MIPS32

Table 3: List of CPU Arithmetic Instructions

Mnemonic Operands Instruction Reference

17 B offset Unconditional Branch MIPS32

18 BEQ rs, rt, offset Branch on Equal MIPS32

19 BEQZ rs, offset Branch on Equal to Zero R3000

20 BGEZ rs, offset Branch on Greater Than or Equal to
Zero

MIPS32

21 BGTZ rs, offset Branch on Greater Than Zero MIPS32

22 BLEZ rs, offset Branch on Less Than or Equal to Zero MIPS32

23 BLTZ rs, offset Branch on Less Than Zero MIPS32

24 BNE rs, rt, offset Branch on Not Equal MIPS32

25 BNEZ rs, offset Branch on Not Equal to Zero R3000

26 J target Jump MIPS32

27 JAL target Jump and Link MIPS32

28 JALR rd, rs Jump and Link Register MIPS32

29 JR rs Jump Register MIPS32

Table 4: List of CPU Branch and Jump Instructions
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Mnemonic Operands Instruction Reference

30 NOP No Operation MIPS32

Table 5: List of CPU Instruction Control Instructions

Mnemonic Operands Instruction Reference

31 LB rt, offset Load Byte MIPS32

32 LBU rt, offset Load Byte Unsigned MIPS32

33 LH rt, offset Load Halfword MIPS32

34 LHU rt, offset Load Halfword Unsigned MIPS32

35 LI rt, imm Load Immediate MIPS32

36 LL rt, offset Load Linked Word MIPS32

37 LW rt, offset Load Word MIPS32

38 LWR rt, offset Load Word Right MIPS32

39 LWL rt, offset Load Word Left MIPS32

40 SB rt, offset Store Byte MIPS32

41 SC rt, offset Store Conditional Word MIPS32

42 SH rt, offset Store Haldword MIPS32

43 SW rt, offset Store Word MIPS32

44 SWL rt, offset Store Word Left MIPS32

45 SWR rt, offset Store Word Right MIPS32

46 SYNC (stype = 0) Synchronize Shared Memory MIPS32

Table 6: List of CPU Memory Instructions

Mnemonic Operands Instruction Reference

47 AND rd, rs, rt And MIPS32

48 ANDI rt, rs, imm And Immediate MIPS32

49 LUI rt, imm Load Upper Immediate MIPS32

50 NOT rd, rs Not R3000

51 OR rd, rs, rt Or MIPS32

52 ORI rt, rs, imm Or Immediate MIPS32

53 XOR rd, rs, rt Exclusive Or MIPS32

54 XORI rt, rs, imm Exclusive Or Immediate MIPS32

Table 7: List of CPU Logical Instructions

Mnemonic Operands Instruction Reference

55 MFHI rd Move From HI Register MIPS32

56 MFLO rd Move From LO Register MIPS32

57 MOVE rd, rs Move R3000

58 MOVN rd, rs, rt Move Conditional on Not Zero MIPS32

59 MOVZ rd, rs, rt Move Conditional on Zero MIPS32

60 MTLO rs Move To LO Register MIPS32

61 MTHI rs Move To HI Register MIPS32

Table 8: List of CPU Move Instructions
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Mnemonic Operands Instruction Reference

62 SLL rd, rt, sa Shift Word Left Logical MIPS32

63 SLLV rd, rt, rs Shift Word Left Logical Variable MIPS32

64 SRA rd, rt, sa Shift Word Right Arithmetic MIPS32

65 SRAV rd, rt, rs Shift Word Right Arithmetic Variable MIPS32

66 SRL rd, rt, sa Shift Word Right Logical MIPS32

67 SRLV rd, rt, rs Shift Word Right Logical Variable MIPS32

Table 9: List of CPU Shift Instructions

Mnemonic Operands Instruction Reference

68 TEQ rs, rt Trap If Equal MIPS32

69 SYSCALL System Call MIPS32

Table 10: List of CPU Trap Instructions

B Constraints for MIPS Instructions

To ensure the correct execution of MIPS program and make the execution trace to ALI
constraints transition smoother, zkMIPS supports the following additional types of con-
straints:

Boundary constraints ensure registers take certain values at certain steps. Typically,
these constraints verify that the correct values were input and output to the first and last
steps of the execution trace, respectively, as in Table 11. The Boundary constraints can
be annotated as tuples (i, j, α), meaning that at the i-th step the j-th register should take
the value α (Equations 12 and 13). Then, following the indexing from Table 1, they can
be expressed as constraint polynomials (Equations 14 and 15) and verified as polynomial
evaluations (Equations 16 and 17).

step instruction . . . input register[0] input register[1] input register[2] . . .

1 - . . . 0 1 2 . . .
...

...
. . .

...
...

...
. . .

U - . . . 1 2 4 . . .

Table 11: Example of boundary constraints

(0, 0, 0) (0, 1, 1) (0, 2, 2) (12)

(U, 0, 1) (U, 1, 2) (U, 2, 4) (13)

Ci′(X) := X − 0 Ci′+1(X) := X − 1 Ci′+2(X) := X − 2 (14)

Ci′′(X) := X − 1 Ci′′+1(X) := X − 2 Ci′′+2(X) := X − 4 (15)

Ci′(P151(g
0))

?
= Ci′+1(P152(g

0))
?
= Ci′+2(P153(g

0))
?
= 0 (16)

Ci′′(P151(g
U ))

?
= Ci′′+1(P152(g

U ))
?
= Ci′′+2(P153(g

U ))
?
= 0 (17)
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Memory constraints ensure values loaded from memory positions match the latest
values stored there. Just like boundary constraints, memory constraints can be anno-
tated as tuples (Table 12 and Equation 18) and implemented as polynomial constraints
(Equations 19 and 20) additionally sorted by ascending memory locations and time. By
analyzing memory transcripts, it is possible to verify the consistency of memory locations
during execution.

step instruction . . . input register[0] input register[1] input register[2] . . .

1 SW r0 M . . . 0 1 2 . . .

2 LW r1 M . . . 0 0 2 . . .

3 SW r2 M . . . 0 0 2 . . .

4 LW r1 M . . . 0 2 2 . . .
...

...
. . .

...
...

...
. . .

Table 12: Example of memory constraints

(1,M, 0) (3,M, 2) (18)

Ci′(X) := X − 0 Ci′+1(X) := X − 2 (19)

Ci′(P151(g
0))

?
= Ci′(P152(g

1))
?
= Ci′+1(P153(g

2))
?
= Ci′+1(P152(g

3))
?
= 0 (20)

General constraints ensure generic constraints on all type of MIPS opcodes such as flag
constraint, if-else conditions with respect to range of values that opcode accept, etc. Just
like boundary and memory constraints, general constraints can be annotated as tuples
(Table 13 and Equation 21) and implemented as polynomial constraints (Equations 22
and 23) .

step instruction . . . pInverse . . . input flag . . . output flag . . .

1 - . . . false . . . true . . . false . . .

2 - . . . true . . . false . . . - . . .

Table 13: Example of memory constraints

(1,pInverse, 0) (1, input flag, 1) (2, output flag, 0) (21)

Ci′(X) := 1−X Ci′+1(X) := X − 0 Ci′+2(X) := 1−X (22)

Ci′(P1(g
0))

?
= Ci′(P147(g

1))
?
= Ci′+1(P192(g

1))
?
= Ci′+1(P147(g

2))
?
= 0 (23)
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